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Effect of host breeds on gut microbiome
and serum metabolome in meat rabbits
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Abstract

Background: Gut microbial compositional and functional variation can affect health and production performance
of farm animals. Analysing metabolites in biological samples provides information on the basic mechanisms that
affect the well-being and production traits in farm animals. However, the extent to which host breeds affect the gut
microbiome and serum metabolome in meat rabbits is still unknown. In this study, the differences in phylogenetic
composition and functional capacities of gut microbiota in two commercial rabbit breeds Elco and Ira were
determined by 16S rRNA gene and metagenomic sequencing. The alternations in serum metabolome in the two
rabbit breeds were detected using ultra-performance liquid chromatography system coupled with quadrupole time
of flight mass spectrometry (UPLC-QTOFMS).

Results: Sequencing results revealed that there were significant differences in the gut microbiota of the two
breeds studied, suggesting that host breeds affect structure and diversity of gut microbiota. Numerous breed-
associated microorganisms were identified at different taxonomic levels and most microbial taxa belonged to
the families Lachnospiraceae and Ruminococcaceae. In particular, several short-chain fatty acids (SCFAs)
producing species including Coprococcus comes, Ruminococcus faecis, Ruminococcus callidus, and
Lachnospiraceae bacterium NK4A136 could be considered as biomarkers for improving the health and
production performance in meat rabbits. Additionally, gut microbial functional capacities related to bacterial
chemotaxis, ABC transporters, and metabolism of different carbohydrates, amino acids, and lipids varied
greatly between rabbit breeds. Several fatty acids, amino acids, and organic acids in the serum were
identified as breed-associated, where certain metabolites could be regarded as biomarkers correlated with the
well-being and production traits of meat rabbits. Correlation analysis between breed-associated microbial
species and serum metabolites revealed significant co-variations, indicating the existence of cross-talk among
host-gut microbiome-serum metabolome.

Conclusions: Our study provides insight into how gut microbiome and serum metabolome of meat rabbits
are affected by host breeds and uncovers potential biomarkers important for breed improvement of meat
rabbits.

Keywords: Host breeds, Gut microbiome, Serum metabolome, Meat rabbits

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: ganning707@163.com; 15279156575@163.com
†Xiaoxing Ye and Liwen Zhou contributed equally to this work.
College of Animal Science (College of Bee Science), Fujian Agriculture and
Forestry University, Fuzhou, China

Ye et al. BMC Veterinary Research           (2021) 17:24 
https://doi.org/10.1186/s12917-020-02732-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-020-02732-6&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ganning707@163.com
mailto:15279156575@163.com


Background
Gut microbial communities play pivotal roles in host
nutrient digestion, energy harvesting, immunity modula-
tion, and disease development [1]. Recently, compos-
itional and functional variation in the gut microbiota has
been linked to the health and production performance
of farm animals [2]. Thus, understanding the mecha-
nisms governing the maintenance and function of gut
microbiota is crucial for farm animal industry. Both en-
vironmental (e.g., diet, medicine, and environmental hy-
giene) and host factors (e.g., genetics background,
gender, and age) can shape the gut microbial communi-
ties [3]. In recent years, accumulating evidence has
highlighted the variation of gut microbiome in different
animal breeds fed under the same conditions. For ex-
ample, Xiao et al. found that gut microbiota of Landrace

and Yorkshire pigs were similar but remarkably different
from that of Duroc and Hampshire pigs [4]. Pandit et al.
identified several breed-specific biomarkers including
the genera Clostridium, Blautia, Butyrivibrio, Rumino-
coccus, and Roseburia in the gut microbial communities
of different broiler chicken breeds [5], while Cheng et al.
observed substantial changes in the metabolic capacities
of xylose, ribose, and fucose in the gut microbiome of
Lantang and Duroc pigs [6].
Metabolomics is an omics approach to identify and

quantify all metabolites present in biological samples [7].
Characterizing the metabolic profile of an individual can
comprehensively reflect the final consequences of com-
plex biological interactions of genetic and environmental
factors [8]. In addition, circulating metabolites constitute
the basic biological mechanisms that affect the well-

Fig. 1 Differences in structure and diversity of gut microbiota between Elco and Ira rabbits. a RDA analysis exhibited the effect of host breeds, gender and age
on gut microbial community structure. b The differences in Chao1, ACE, and observed species indices between Eloc and Ira rabbits (“ns” FDR adjusted p >0.05).
c The differences in Shannon, Simpson, and Good’s coverage indices between Eloc and Ira rabbits (“*” FDR adjusted p <0.05). d The differences in unweighted
and weighted UniFrac distance between Eloc and Ira rabbits (“**” FDR adjusted p <0.01)
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being and production traits in farm animals [9]. Previous
studies have unraveled a variety of breed-associated meta-
bolic molecules in different animals raised under the same
environmental conditions. For instance, Italian Large White
pigs were distinguished from Italian Duroc pigs by plasma
levels of sphingomyelins and biogenic amine [9]; several
serum fatty acids (e.g., oleic acid and linoleic acid), amino
acids (e.g., glutamine and asparagine), and organic acids (e.g.,
citric acid and fumaric acid) were regarded as breed-specific
biomarkers in different beef cattle breeds [8]; and certain
amino acids and organic acids in both muscle and liver have
been shown to reflect the breed-selection history of Dorper
and Merino sheep [10].
Microbiomics and metabolomics have been effective in im-

proving our understanding of how host breeds affect gut
microbiome and metabolic profile in livestock, respectively.
Nonetheless, few studies have applied a combined meta-
omics approach to evaluate the role of host breeds in struc-
turing gut microbial communities and circulating metabolic
profiles, and to investigate the relationship between breed-
associated microorganisms and metabolites. In the current
study, we analysed the gut microbiome and serum metabo-
lome in two commercial meat rabbit breeds (Elco and Ira),
exploring the correlations between breed-associated micro-
bial species and serum metabolites. Our findings not only
provide the basic knowledge of how host breeds shape both
the gut microbiome and the serum metabolome, but uncover
potential biomarkers for practical applications in promoting
the well-being status and production performance of meat
rabbits.

Results
Structure and diversity of gut microbiota in Elco and Ira
rabbits
To understand how host breeds affect gut microbial
community structure, we performed RDA analysis,
which revealed that breeds exerted a stronger effect on

gut microbial communities in comparison to gender and
age (Fig. 1a). The alpha diversity analysis showed that
there were no significant differences in Chao1, ACE, ob-
served species, and Good’s coverage between Elco and
Ira rabbits, but Elco rabbits had significantly higher
Shannon and Simpson indices than Ira rabbits (Fig. 1b
and c, FDR adjusted P < 0.05). On the other hand, beta
diversity analysis using both weighted and unweighted
UniFrac distances indicated that Ira rabbits had higher
dissimilarities among gut microbial communities than
Elco rabbits (Fig. 1d, FDR adjusted P < 0.05).

Differences in gut microbial composition between Elco
and Ira rabbits
The six predominant phyla in the gut microbial communi-
ties of both Elco and Ira rabbits were as follows: Firmi-
cutes, Bacteroidetes, Cyanobacteria, Verrucomicrobia,
Proteobacteria, and Tenericutes (Fig. 2a). Sixteen out of
nineteen most dominant genera were derived from the
phylum Firmicutes, such as Ruminococcus_1, Christense-
nellaceae_R-7_group, Ruminococcaceae_NK4A214_group,
and Ruminococcaceae_V9D2013_group (Fig. 2b). The
other three most dominant genera were Alistipes and Bac-
teroides (phylum Bacteroidetes) and Akkermansia (phylum
Verrucomicrobia).
Wilcoxon rank sum test analysis was performed to identify

differences in relative abundances of bacteria between Elco
and Ira rabbits within the two taxonomic levels: phylum and
genus (Additional file 2: Table S2). At the phylum level, the
relative abundance of Verrucomicrobia in Elco rabbits (1.21±
0.93) was significantly higher in comparison to Ira rabbits
(0.50±0.28; FDR adjusted P < 0.05), but there were no signifi-
cant differences in relative abundances of the other phyla. At
the genus level, the relative abundances of Akkermansia,
Lachnospiraceae_ruminantium_group, Subdoligranulum,
and Ruminococcus_2 were significantly higher in Elco rabbits
(1.18±0.94, 2.08±1.98, 0.81±0.48, and 0.73±0.40, respectively)

Fig. 2 The gut microbial taxonomic distribution in Elco and Ira rabbits. (a) At the phylum level. b At the genus level
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compared to those of Ira rabbits (0.50±0.28, 0.78±0.86, 0.47±
0.23, and 0.36±0.15, respectively;FDR adjusted P < 0.05),
while the relative abundances of other genera did not differ
significantly (Additional file 2: Table S2).
To detect more differentially enriched bacteria be-

tween rabbit breeds, we analysed the relative abundances
of OTUs using the Wilcoxon rank sum test. Nineteen
OTUs exhibited significantly different abundances

between Elco and Ira rabbits (Fig. 3 and Additional file
2: Table S3). Among these, ten OTUs were enriched in
Elco rabbits and nine other OTUs were augmented in
Ira rabbits. These OTUs were annotated to different
taxonomic levels. In Elco rabbits, three OTUs were an-
notated to the family Lachnospiraceae, two OTUs to
each of the family Ruminococcaceae and Coriobacteria-
ceae, and one OTU to the family Bacteroidales_S24-7_

Fig. 3 The identified significantly different OTUs in Elco and Ira rabbits. The neighbor-joining tree represents phylogenetic relationships of the
breed-associated OTUs and bootstrap values are shown on the branches. The barplot shows the average relative abundances of each OTU in the
two rabbit breeds

Fig. 4 The identified significantly different microbial species in Elco and Ira rabbits. The apricot bar represents for Elco-associated species, the
cyan bar corresponds to Ira-associated species
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group. At the genus level, one OTU was annotated to
each of Ruminiclostridium_6 and Ruminococcaceae_
UCG-001. In Ira rabbits, eight OTUs were annotated to
the family level, including three OTUs to Lachnospira-
ceae, two OTUs to each of Ruminococcaceae and Bac-
teroidales_S24-7_group, and one OTU to Clostridiales_
vadinBB60_group. One OTU was annotated to the genus
Ruminococcaceae_UCG-013.
Due to the limitations of 16S rRNA gene sequencing,

we could not identify the microorganisms at the species
level. Hence, we performed LEfSe analysis using metage-
nomic species data. As shown in Figs. 4, 11 species, in-
cluding Clostridium sp. CAG:710, Blautia sp. CAG:37,
Lachnospiraceae bacterium NK4A136, Bacteroides faeci-
chinchillae, and Ruminococcus sp. CAG:488 were more
abundant in Elco rabbits, while 12 species, including
Clostridium sp. CAG:1013, Bacteroides eggerthii CAG:
109, Coprococcus comes, Ruminococcaceae bacterium
mt9, and Lachnospiracea ebacterium ND2006 were more
abundant in Ira rabbits. In consistent with the results
obtained at higher taxonomic levels, we found that in
both rabbit breeds most of the more abundant species
(16 out of 23) were members of the family Lachnospira-
ceae and Ruminococcaceae.

Microbial functional profiles in Elco and Ira rabbits
To investigate the functional differences of the gut mi-
crobial communities between Elco and Ira rabbits, LEfSe
analysis was performed using metagenomic KOs and
KEGG pathways data (Fig. 5 and Additional file 2: Table
S4). Twenty-four KOs were highly represented in Elco
rabbits (Fig. 5a), of which most were assigned to bacter-
ial chemotaxis (e.g., K03411, K02556, and K02410), two-

component system (e.g., K02406, K07710, and K03415),
pentose phosphate pathway (e.g., K00036, K00033, and
K06151), fructose and mannose metabolism (e.g.,
K18333, K01840, and K01805), and valine, leucine and
isoleucine degradation (e.g., K05606 and K18661).
Meanwhile, 26 KOs were significantly enriched in Ira
rabbits, most of which were related to ABC transporters
system (e.g., K10188, K17235, K10190, and K02195),
phenylalanine, tyrosine and tryptophan metabolism (e.g.,
K01556, K00014, K04517, and K10797), galactose me-
tabolism (e.g., K01835, K01193, and K01684), glyceroli-
pid metabolism (e.g., K01130 and K03621), and lysine
metabolism (e.g., K00658 and K00003). KEGG pathways
comparison analysis indicated that eight functional cat-
egories, including primary bile acid biosynthesis, second-
ary bile acid biosynthesis, bacterial chemotaxis, and
alpha-linolenic acid metabolism, were more active in
Elco rabbits. In contrast, 8 functional categories, such as,
ABC transporters, lysine biosynthesis, tryptophan me-
tabolism, peptidoglycan biosynthesis, and phenylalanine
metabolism, were more abundant in Ira rabbits (Fig. 5b).

Serum metabolome alterations in Elco and Ira rabbits
To comprehensively understand how the serum metabo-
lome differed between Elco and Ira rabbits, non-targeted
UPLC-QTOFMS was used to characterise the serum
metabolomics profiles. In total, 834 metabolite features
were obtained. PLS-DA analysis using all metabolite fea-
tures showed a clear difference between Elco and Ira
rabbits (Additional file 1: Fig. S1). In addition, 73 signifi-
cantly different metabolites were identified (FDR ad-
justed p < 0.05, Fig. 6a, Additional file 2: Table S5).
Among these, 39 metabolites were more abundant in

Fig. 5 Heatmap showing differentially enriched functional capacities in Elco and Ira rabbits. a KOs. b KEGG pathways
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Elco rabbits, with 14 fatty acids and derivatives (e.g.,
heptadecanoic acid, erucic acid, nervonic acid, pristanic
acid, phytanic acid, and pentadecanoic acid); six amino
acids and derivatives (e.g., L-glutamine, glycine, L-serine,
and acetylglycine); and six organic acids (e.g., 2-hydroxy-
butanoic acid, 3-aminobutyric acid, glycolithocholic acid,
and 4-aminobutyric acid). The other 34 metabolites were
enriched in Ira rabbits, including 13 amino acids and de-
rivatives (e.g., L-cystine, 3-methylhistidine, L-kynurenine,
L-lysine, L-proline, and L-tryptophan), ten organic acids
(e.g., chlorogenic acid, 3-phenylpropanoic acid, phenylace-
tic acid, succinate, and alpha-ketoglutarate), and two

fatty acids and derivatives (2-methylglutaric acid and
adipic acid).
Pathway enrichment analysis using significantly differ-

ent metabolites identified 28 differentially enriched
metabolic pathways in the two rabbit breeds (Fig. 6b).
Several metabolic pathways of fatty acids (e.g., alpha
linolenic acid and linoleic acid metabolism, propanoate
metabolism, bile acid biosynthesis, and oxidation of
branched chain fatty acids) and amino acids (e.g., aspar-
tate metabolism, glutamate metabolism, arginine and
proline metabolism, and valine, leucine and isoleucine
degradation) were more activated in Elco rabbits, while

Fig. 6 The differences in serum metabolic profiles of Elco and Ira rabbit. a Significantly different metabolites. b KEGG pathways enriched by
significantly different metabolites
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in Ira rabbits amino acids metabolic pathways (e.g., histi-
dine metabolism, glycine and serine metabolism, trypto-
phan metabolism, glutathione metabolism, and tyrosine
metabolism) were more activated.

Correlations between breed-associated gut microbial
species and serum metabolites
To evaluate the potential relationships between breed-
associated gut microbial species and serum metabolites,
we performed Spearman rank correlation analysis. A
total of 343 significant correlations were identified (FDR
adjusted P < 0.05, Fig. 7). In Elco rabbits, ten of the most
abundant species were significantly associated with at
least one metabolite. Among these, Lachnospiraceae
bacterium NK4A136, Bacteroides clarus CAG:160, Lach-
nospiraceae bacterium COE1, Ruminococcus sp. CAG:
579, and Lachnospiraceae bacterium AC2031 were the
predominant species, which had 110 significant associa-
tions with metabolites. Meanwhile, twenty Elco-
associated metabolites showed significant associations
with at least one species. Among the metabolites, tauro-
cholate, pristanic acid, phytanic acid, heptadecanoic acid,
erucic acid, 4-aminobutyric acid, linoleic acid, cheno-
deoxycholate, and stearidonic acid were the dominant
ones, each of which was associated with at least 10 spe-
cies. Twelve Ira-associated species, including Pseudobac-
teroides cellulosolvens, Lachnospiraceae bacterium CAG:
215, Ruminococcaceae bacterium mt9, Clostridium sp.
CAG:1013, and Lachnospiracea ebacterium ND2006,
which totally exhibited 181 significant associations with
35 metabolites. In addition, 22 Ira-associated metabolites
were significantly correlated with at least one species,

including 4-hydroxycoumarin, DL-3-hydroxybutyric
acid, allocystathionine, homoveratric acid, guanidoacetic
acid, L-carnitine, Glu-Ser, L-lysine, 4-guanidinobutyric
acid, L-cystine, L-kynurenine, p-Hydroxyphenylacetic
acid, and adenosine 3′-monophosphate, each of which
was associated with more than 10 species.

Discussion
Emerging evidence has linked the gut microbiome and
metabolome to the health, development, and growth of
farm animals [11–13]. Hence, understanding how host
and environmental factors affect the gut microbiome
and metabolome is beneficial to improve the well-being
and production performance of animals. However, few
studies have investigated the effects of host breed on the
gut microbiome and metabolome of meat rabbits. Thus,
we explored differences in the gut microbiome and
serum metabolome of Elco and Ira rabbits and estab-
lished correlations between breed-associated microbial
species and serum metabolites.
We evaluated whether breed factors could alter the

gut microbial community structure, and similar to previ-
ously findings [14], we found that host breeds exerted a
greater effect on the structure of gut microbiota than
gender and age (Fig. 1A). The weak effect of gender and
age on gut microbial communities is most likely due to
the rabbit population used in this study, where animals
were sexually immature individuals of a similar age [15,
16]. The Shannon and Simpson indices of Elco rabbits
were significantly higher than those of Ira rabbits,
whereas Ira rabbits showed significantly greater weighted
and unweighted UniFrac distances than Elco rabbits

Fig. 7 Heatmap showing correlations between breed-associated microbial species and serum metabolites. The barplot no the top and right side
of heatmap shows the total amount of significant correlations of each breed-associated metabolites and species, respectively. “*” FDR adjusted p
< 0.05, “**” FDR adjusted p < 0.01, “***” FDR adjusted p < 0.001, “****” FDR adjusted p < 0.0001
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(Fig. 1b-d). Earlier studies have highlighted these micro-
bial diversity indices vary greatly in different pig,
chicken, and horse breeds [4, 5, 17].
Consistent with previous studies on gut microbiota in

meat rabbits [18, 19], we found that phyla Firmicutes, Bac-
teroidetes, Cyanobacteria, Verrucomicrobia, Proteobac-
teria, and Tenericutes, and the genera Ruminococcus_1,
Christensenellaceae_R-7_group, Ruminococcaceae_
NK4A214_group, Alistipes, Bacteroides, and Akkermansia
were the most dominant microbial taxa in the gut micro-
bial communities irrespective of breed type (Fig. 2). The
relative abundances of the main phyla did not differ be-
tween both rabbit breeds, except for the phylum Verruco-
microbia, which showed a higher abundance in Elco
rabbits (Additional file 2: Table S2). This could be ex-
plained by the presence of the phyla Firmicutes, Bacteroi-
detes, and Proteobacteria as they are significantly affected
by diet factors (e.g., dietary fibre type and level) [20, 21]
and our rabbits were reared under identical conditions, re-
ceiving the same diet. Similarly, Li et al. found that indi-
viduals of the same horse breed raised under different
feeding regimes showed tremendous variations in the rela-
tive abundances of Firmicutes and Bacteroidetes but not
in those of Verrucomicrobia [17]. Moreover, our previ-
ously study has found that the phylum Verrucomicrobia is
related to nutrient extraction and intestinal health status
of meat rabbits [22].
Likewise, the relative abundances of most dominant

genera did not differ between the two rabbit breeds, but
the greater abundances of Akkermansia, Lachnospira-
ceae_ruminantium_group, Subdoligranulum, and Rumi-
nococcus_2 were found in Elco rabbits (Additional file 2:
Table S2). The genus Akkermansia belongs to the
phylum Verrucomicrobia and its abundance has varied
in different pig breeds from the same pig farm [23]. Im-
portantly, Akkermansia could be involved in the forma-
tion of a protective mucosal layer that contributes to
deal with inflammatory processes [24]. The relative
abundance of Subdoligranulum and Ruminococcus_2 has
also been found to differ in different broiler chicken
lines from the same poultry farm [25]. Additionally,
Ruminococcus species have been reported to improve
the immune response in rabbits [26].
At the OTU level, nineteen OTUs showed significantly

different abundances between rabbit breeds, and over
65% of OTUs were annotated to the families Rumino-
coccaceae, Lachnospiraceae, and Bacteroidales_S24-7_
group (Fig. 3). Org et al. demonstrated that genetic
background of mice could explain a substantial amount
of the variation of microorganism of these three families
when mice were raised in a uniform environment [27].
In addition, Zeng et al. found that variations in the
abundance of these three families were associated with
body weight of rabbits [28].

At the species level, of the 23 species whose abun-
dances differed significantly between Elco and Ira rabbits
(Fig. 4), 16 belonged to the families Ruminococcaceae
and Lachnospiraceae, which are known to ferment diet-
ary fiber to produce short-chain fatty acids (SCFAs) [29,
30]. In this study, several well-known SCFAs-producing
species were identified. For example, abundant Copro-
coccus comes inhabits in Ira rabbits, which produces
acetate and exhibits multiple kinase activities (e.g., butyr-
ate kinase) that play an important role in butyrate pro-
duction [31]. Ruminococcus faecis is a butyrate-
producing bacterium showing greater abundance in Ira
rabbits, which has also been linked to acetate and propi-
onate production [32]. Additionally, Ruminococcus calli-
dus and Lachnospiraceae bacterium NK4A136, which
are important butyrate producers, were more abundant
in the gut of Elco rabbits [33, 34]. Due to SCFAs widely
participate in physiological and pathophysiological inter-
actions between the gut microbiota and the host [35],
we hypothesized that these breed-associated SCFAs-
producing species should play a central role in the
health, development, and growth of rabbits, and could
be considered as potential biomarkers for production
performance improvement [36]. Indeed, previous studies
have demonstrated that Coprococcus, Ruminococcus, and
Lachnospiraceae species are intimately correlated with
growth performance of meat rabbits [18, 37].
Differentially enriched functional features of the gut

microbiome between Elco and Ira rabbits were also un-
covered (Fig. 5). KOs related to bacterial chemotaxis,
two-component system, and metabolic pathways of pen-
tose phosphate, fructose, mannose, and branched chain
amino acids (BCAAs, valine, leucine, and isoleucine)
were more abundant in Elco rabbits, whereas KOs corre-
lated with ABC transporters and metabolic pathways of
galactose, glycerolipid, lysine, and aromatic amino acids
(AAAs, phenylalanine, tyrosine, and tryptophan) were
overrepresented in Ira rabbits. Bacterial chemotaxis and
two-component system are essential for colonization
and proliferation of gut microorganisms, and thus play
important roles in energy cross-talk between gut micro-
biota and the host [25]. The pentose phosphate pathway
is the major metabolic route that degrades non-
digestible polysaccharides into oligosaccharides and
monosaccharides fuels the central carbon metabolism
[38]. A recent mouse gut microbiota study suggested
that the presence of the pentose phosphate pathway was
related to the host genetic background [39]. ABC trans-
porters belong to transport system super family, which
are widely distributed (from prokaryotes to eukaryotes)
and evolutionarily conserved [40]. A similar study in
sheep indicated that the abundance of microbial ABC
transporters differed between Tibetan and Small Tail
Han breeds grown under the same environmental
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conditions [41]. In addition, the metabolic pathways of
carbohydrates (fructose, mannose, and galactose), amino
acids (BCAAs, AAAs, and lysine), and lipids (glyceroli-
pid) have been shown to differ among farm animal
breeds grown under the standardized feeding conditions
[6, 42–45]. The breed-associated KEGG pathways
showed substantial overlap with the breed-associated
KOs. However, several metabolic processes correlated
with the host genetic background were found. For ex-
ample, gene expression of the host cholesterol-7α-
hydroxylase (CYP7A1), oxysterol-7α-hydroxylase
(CYP7B1), and sterol-27-hydroxylase (CYP27A1) gene
expressions can regulate the biosynthesis of gut micro-
bial primary and secondary bile acid [46]. The metabol-
ism of gut microbial vitamin B6 is modulated by
different host genotypes [47].Additionally, the biosyn-
thesis route of peptidoglycan provides essential sub-
stances that interact with host peptidoglycan recognition
proteins (PGRPs), which play important roles in regulat-
ing metabolism and immune homeostasis [48]. These
breed-associated differences in the functional profiles of
the gut microbiome suggest the potential superiorities in
manipulation of gut microbiome through selective
breeding to promote the well-being and production per-
formance of meat rabbits.
To identify breed-associated metabolites and further

understand the underlying differences in basic metabolic
processes in Elco and Ira rabbits, we investigated the
characteristics of serum metabolomics (Additional file:
Fig. S1, Fig. 6). We found that most of the metabolites
that differed between rabbit breeds belonged to fatty
acids, amino acids, and organic acids involved in distinct
metabolic processes. Certain fatty acids are not only in-
fluenced by the host genetic background, but are also
important biomarkers of production traits in animals.
For instance, heptadecanoic and pentadecanoic acid are
derived from fatty acid oxidation pathway, which dif-
fered between Jersey and Holstein breeds, and are asso-
ciated with residual feed intake (RFI) status [49]. Serum
nervonic acid, which is affected by the genotypes of dairy
cow, is involved in fatty acid biosynthesis, and correlated
with reproductive performance [50]. Specific amino acid
concentrations in the biofluid and the corresponding
metabolic pathways vary with different animal breeds, af-
fecting the health and production performance of ani-
mals. For example, Liao et al. found that significant
differences in levels of glutamine, cysteine, and glutamic
acid among different beef cattle breeds led to alterations
in the metabolism of cysteine, methionine, and glutam-
ate, which are related to heat stress adaptability [8].
Wang et al. indicated that plasma alanine and proline
were potential biomarkers for feed efficiency in Duroc
and Landrace pigs due to their important roles in the
metabolism of alanine, arginine, and proline [51]. Other

studies have demonstrated that serum concentrations of
glycine, histidine, lysine, and serine were associated with
diverging RFI of different broiler chicken lines which
may be attributed to their contributions to protein bio-
synthesis and ammonia recycling [52, 53]. Additionally,
certain organic acids, such as 4-aminobutyric acid, 3-
phenylpropanoic acid, and phenylacetic acid are involved
in many biological processes: modulating glucose and
lipid metabolism, regulating energy homeostasis, and
exerting antioxidant, anti-inflammatory, and neuropro-
tective actions [54–56]. Thus, such breed-associated me-
tabolites, which may be correlated with the health status
and production traits of meat rabbits, could be consid-
ered as candidate biomarkers for breed improvement.
Previous studies have indicated that an altered serum

metabolome profile could reflect differences in the gut
microbiome of animals [11, 16, 57], which consistent
with our findings (Fig. 7). In both rabbit breeds, ten
dominant species had the largest number of significant
correlations with metabolites, where seven species
belonged to the families Lachnospiraceae (e.g., Lachnos-
piraceae bacterium NK4A136 and Lachnospiraceae bac-
terium CAG:215) and Ruminococcaceae (e.g.,
Ruminococcus sp. CAG:579 and Ruminococcaceae bac-
terium mt9). Likewise, 22 dominant metabolites had the
largest number of significant associations with species,
which were attributed to fatty acids (e.g., heptadecanoic
acid, erucic acid, and linoleic acid), amino acids (e.g., L-
lysine, L-cystine, and L-kynurenine), and organic acids
(e.g., pristanic acid, 4-aminobutyric acid, and DL-3-
hydroxybutyric acid). These results suggest that, in meat
rabbits, host breeds can shape gut microbiome and
serum metabolome, implying that interactions among
host-gut microbiome- serum metabolome are important.
Our study has limitations as we analysed only two rabbit

breeds, but it provides important evidence of the effect
host breeds have on the gut microbiome and serum me-
tabolome in meat rabbits and unravels a number of micro-
bial species and serum metabolites that could be
considered as candidate biomarkers for breed improve-
ment in meat rabbits. In this context, further studies aim-
ing to understand the underlying mechanisms of how host
breeds modeling the gut microbiome and serum metabo-
lome are needed. In addition, future studies aiming to val-
idate such biomarkers in a large population with multiple
rabbit breeds should also be considered.

Conclusions
The current study provides information on the effect
host breeds have on gut microbiome and serum metabo-
lome of meat rabbits. Differences in gut microbial fea-
tures (such as, diversity, microbial taxa, and functional
capacities) and serum metabolites were detected be-
tween Elco and Ira rabbits. Even though such breed-
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associated differences constitute a small part of the com-
plex biological processes, our study provides information
that could aid future studies in determining the genetic
basis of microbial and metabolome profiles variation,
improving our knowledge of host-gut microbiome-
serum metabolome interactions and how it influences
the health and production traits of meat rabbits.

Methods
Experimental animals and sample collection
Fifteen rabbits (8 males and 7 females) with similar age
(72 ± 2 days) were randomly selected from Elco and Ira
breed in the rabbit farm of Wanjia Animal Husbandry
Co., Ltd., Longyan, China. All rabbits were fed with the
same commercial pellet diet (Additional file 2: Table S1)
under the same raising environment conditions. All rab-
bits were healthy and had not received antibiotics, antic-
occidial drugs, probiotics or prebiotics before hard fecal
samples were collected. Three rabbits (2 males and 1 fe-
male) were randomly selected from each group for meta-
genomic sequencing and jugular vein blood collection.
Blood samples were refrigerated on ice after collection
for 1 h and serum was obtained by centrifugation at
2000 rpm for 10 min. All samples were snap frozen in li-
quid nitrogen for transportation and stored at − 80 °C
until further utilization. At the end of the study, all rab-
bits (80 ± 2 days) were transported to the local slaugh-
terhouse, stunned with electronarcosis and quickly bled
by cutting the jugular veins and carotid arteries.

16S rRNA gene sequencing
Total genomic DNA was isolated from feces using the
QIAamp Fast DNA Stool Mini Kit (QIAGEN, Germany)
according to the manufacturer’s instructions. The quan-
tity and quality of DNA was detected by using the Nano-
drop ND-2000 spectrophotometer (Thermo Fisher
Scientific, USA) and 1% agarose gel electrophoresis, re-
spectively. The fusion primers 341F (5′-CCTACGGG
NGGCWGCAG-3′) and 806R (5′- GGACTACHVGGG
TATCTAAT-3′) were used to amplify the V3-V4 hyper-
variable region of the 16S rRNA gene under the anneal-
ing temperature of 55 °C with 28 cycles. The products of
amplification were purified, and then sequenced on
Hiseq-2500 platform (Illumina, USA) according to the
manufacturer’s manuals. Quality control of raw data in-
cluding filter out the primers, barcodes, and low quality
sequences was accomplished by QIIME (v.1.9.1) [58].
High-quality paired-end reads (quality score ≥ 20) were
assembled into tags by using FLASH (v.1.2.11) [59]. To
avoid potential sequencing depth bias, the library size of
microbial sequences of each sample was rarefied to 40,
000 tags [60]. Tags with > 97% sequence identity were
clustered into operational taxonomic units (OTUs) using
USEARCH (v.10.0) [61]. Taxonomic category assignments

of OTUs were performed by using SILVA database (v.132)
[62]. The alpha and beta diversity indices were calculated
using Mothur (v.1.41.1) and QIIME (v.1.9.1), respectively
[58, 63].

Metagenomic sequencing
According to the manufacturer’s instructions (Illumina,
USA), a pair-end (PE) DNA library was constructed for
each sample. Sequencing was performed on an Illumina
Hiseq-4000 platform. Fastp (v.0.19.4) was used to quality
control, adapter trimming, and low-quality reads filtering
of raw reads [64]. High quality reads were assembled
into contigs by using the MEGAHIT (v.1.1.3) [65]. Open
reading frames (ORF) prediction was performed using
the contigs with more than 200 bp in length by Meta-
GeneMark (v.2.10) [66]. Cd-hit (v.4.6.1) was used to ex-
clude the redundant genes from the predicted ORFs to
construct the non-redundant gene catalogue [67]. Gene
abundance was calculated by mapping the high quality
reads against the non-redundant gene catalogue using
MOCAT (v2.0) [68]. Taxonomic category assignments
of the genes were performed by aligning against non-
redundant (NR) database using DIAMOND (v.0.9.24)
[69]. KEGG Orthologies (KOs) and KEGG pathways an-
notation information from Kyoto Encyclopedia of Genes
and Genomes (KEGG) database were obtained by Ghost-
KOALA [70].

Serum metabolomics profiling
Serum samples were used for untargeted metabolomics
analysis by ultra-performance liquid chromatography
system coupled with quadrupole time of flight mass
spectrometry (UPLC-QTOFMS). Serum samples were
preprocessed as the following modified protocol [71].
100 μl of serum from each sample was precipitated by
300 μl methanol precooled to − 20 °C. After mixing with
a vortex, all samples were incubated at − 20 °C for 30
min and centrifuged at 13,000 rpm for 20 min at 4 °C to
obtain the supernatant. The supernatant (500 μl) was
collected and freeze-dried for storage. The dried super-
natants were resolved in 200 μl of 15% methanol (diluted
by water) and transferred into the sampling vials for
UPLC-QTOFMS (Waters, USA) analysis. Additionally,
the quality control (QC) sample was created by mixing
an aliquot of equal volume for each sample.
The Acquity UPLC system (Waters, USA) was used

for chromatographic analysis. 2 μl prepared sample was
injected into BEH C18 column (100 mm × 2.1 mm,
1.7 μm; Waters). To avoid the potential instability of the
system and monitor analytical stability, QC sample was
injected at the initial phase of analyzing. Under both
positive and negative electrospray ion condition, the flow
rate was 400 μl/min at column temperature 40 °C, all
samples were eluted using a linear gradient from 100%
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solvent A (0.1% formic acid in water) to 100% solvent B
(acetonitrile). After separation by UPLC, a Q-TOF
Premier (Waters, USA) equipped with the electrospray
ionization (ESI) source operating in positive and negative
mode (Waters, USA) was used for mass spectrometry
analysis. For both ionization modes, MS parameters
were as follows: source temperature was set at 120 °C,
desolvation temperature gas at 400 °C, capillary voltage
at 2.5 kV. The scan range was from 50 to 1200m/z with
a scan time of 0.3 s. Leucine enkephalin (556.2771 m/z
in ESI+, 554.2615m/z in ESI-) was used as lock mass
correction at a flow rate of 15 μL/min for each sample.
System control and data acquisition was performed by
using MassLynx (Waters, USA).
The raw data was processed by the Progenesis QI (Waters,

USA) for peak alignment to obtain a peak list consist of the
retention time, m/z, and peak area [72]. Based on retention
time and the m/z data pairs, both ion intensity of each peak
and a matrix consist of sample names, ion intensities, and ar-
bitrarily assigned peak indices were obtained. The matrix
was further trimmed by filtering out peaks with missing
values in more than 75% of samples and those with isotope
ions to obtain consistent variables. The qualified peaks were
normalized to the QC sample by using support vector re-
gression algorithm in R package MetNormalizer [73]. To as-
sess the repeatability of metabolomic data sets, the
coefficient of variation of metabolites in the QC samples was
set at a threshold of 25%. Partial least squares discriminant
analysis (PLS-DA), identification of significantly different me-
tabolites (Wilcoxon test with FDR correction), and KEGG
pathways enrichment analysis was performed by using Meta-
boAnalyst 4.0 web server [74].

Statistical analysis
To identify the effect of host breeds, age and gender
on gut microbial communities, redundancy analysis
(RDA) was performed by using the vegan package in
R. Wilcoxon rank sum test with false discovery rate
(FDR) correction was performed to detect differences
in microbial diversity indices and relative abundances
of microbes at different taxonomic levels between Elco
and Ira rabbits. The significant differences in relative
abundances of microbial species and functional capaci-
ties between Elco and Ira rabbits were uncovered by
using linear discriminant analysis effect size (LEfSe)
analysis. To make heatmap more legibility to show the
differential functional features, the relative abundances
were transformed to enrichment scores as previously
described by Contrepois et al. [75]. Spearman rank sum
correlation analysis with FDR correction was used to
calculate the correlation coefficients between breed-
associated species and metabolites [76]. Excepted the
differential OTUs were visualized using iTOL [77], the
other plots were generated in R.
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