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Abstract

Background: Apramycin is used exclusively for the treatment of Escherichia coli (E.coli) infections in swine around
the world since the early 1980s. Recently, many research papers have demonstrated that apramycin has significant
in vitro activity against multidrug-resistant E.coli isolated in hospitals. Therefore, ensuring the proper use of
apramycin in veterinary clinics is of great significance of public health. The objectives of this study were to develop
a wild-type cutoff for apramycin against E.coli using a statistical method recommended by Clinical and Laboratory
Standards Institute (CLSI) and to investigate the prevalence of resistance genes that confer resistance to apramycin
in E. coli.

Results: Apramycin susceptibility testing of 1230 E.coli clinical isolates from swine were determinded by broth
microdilution testing according to the CLSI document M07-A9. A total number of 310 E.coli strains from different
minimum inhibitory concentration (MIC) subsets (0.5–256 μg/mL) were selected for the detection of resistance
genes (aac(3)-IV; npmA; apmA) in E. coli by PCR. The percentage of E. coli isolates at each MIC (0.5, 1, 2, 4, 8, 16, 32,
64, 128, and 256 μg/mL) was 0.08, 0.08, 0.16, 2.93, 31.14, 38.86, 12.85, 2.03, 1.46, and 10.41%. The MIC50 and MIC90
were 16 and 64 μg/mL. All the 310 E.coli isolates were negative for npmA and apmA gene, and only the aac(3)-IV
gene was detected in this study.

Conclusions: The wild-type cutoff for apramycin against E.coli was defined as 32 μg/mL. The prevelance of aac(3)-IV
gene mainly concentrated in these MIC subsets ‘MIC ≥ 64 μg/ mL’, which indicates that the wild-type cutoff
established in our study is reliable. The wild-type cutoff offers interpretion criteria of apramycin susceptibility testing
of E.coli.
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Background
Escherichia coli (E.coli) usually colonizes the animal
gastrointestinal tract as a commensal bacterium, and
only a small number of strains are pathogenic. Entero-
toxigenic E.coli (ETEC) represents one of these

pathotypes that cause a variety of enteric and extraintes-
tinal diseases in humans and animals [1]. ETEC is spread
by the fecal-oral route with food and water being the
principal sources of infection [1]. In humans, ETEC is
the main cause of bacterial diarrhea in adults and chil-
dren in developing countries and is also a leading cause
of traveler’s diarrhea [2]. In pigs, enteric diseases caused
with ETEC may result in significant economic losses due
to morbidity, mortality, cost for treatments, decreased
weight gain, vaccinations, and feed supplements [3].
Apramycin (APR), an aminoglycoside antibiotic, has

been used exclusively for the treatment of E.coli
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infections in swine, cattle, sheep, poultry, and rabbits
around the world since the early 1980s and was ap-
proved for use in China in 1999 [4]. Recently, many re-
search papers have demonstrated that apramycin has
significant in vitro activity against multidrug-, carba-
penem- and aminoglycoside-resistant E.coli isolated in
hospitals. And its excellent breadth of activity renders
apramycin a promising drug candidate for the treatment
of systemic Gram-negative infections [5–11]. The first
resistant E. coli strain was detectable in nature shortly
after the application of APR [12]. It has been determined
to date that two resistance genes confer resistance to
APR in E. coli. One is AAC (3)-IV, which encodes an
aminoglycoside 3-N-acetyltransferase type IV enzyme
[13]. The other is NpmA, which was identified in a clin-
ical E. coli strain and encodes a 16S rRNA m1A1408
methyltransferase [14]. Moreover, another APR resist-
ance gene, apmA, was detected in bovine methicillin-
resistant Staphylococcus aureus (MRSA) of sequence
type 398 in 2011 and encodes for a protein of 274 amino
acids [15]. APR resistance has been also detected in
E.coli clinical isolates of hospitalized patients despite it
has not been used in human medicine [16]. The hori-
zontal transfer of the APR resistance gene aac(3)-IV re-
sults in the dissemination of APR-resistance E. coli
isolates between animals and humans [17]. In addition,
cross-resistance between APR and other aminoglyco-
sides such as gentamicin (GEN) and tobramycin for the
treatment of severe infections in humans has been well
documented [18, 19]. Previous study reported that pigs
may have been an important reservoir for GEN-
resistance bacteria transfer to humans [20]. Considering
the importance of GEN in human medicine, improper
use of APR in animals contributing to increased resist-
ance is of great concern.

Wild-type cutoff values (COWT) are the useful tools
available to laboratories performing susceptibility testing
and to clinicians treating infections. In addition, the
tools also provide alternative means for monitoring the
emergence of drug resistance in any given bacterial spe-
cies [21]. A statistical method was a more scientific
method which has been adopted by the Clinical and La-
boratory Standards Institute (CLSI) as a standard
method for COWT establishment [22, 23]. The purposes
of the present study were (i) to develop COWT of APR
against E.coli using a statistical method recommended
by CLSI and (ii) to investigate the prevalence of genes
that confer resistance to APR in E. coli.

Results
Antibacterial susceptibility testing
The original MICs distributions and MICs cumulative
distributions of APR are presented in Fig. 1, MICs for
APR against 1230 E.coli isolates (858 isolated, 372 do-
nated) were in the range of 0.5 to 256 μg/mL. The per-
centage of E. coli isolates at each MIC (0.5, 1, 2, 4, 8, 16,
32, 64, 128, and 256 μg/mL) were 0.08, 0.08, 0.16, 2.93,
31.14, 38.86, 12.85, 2.03, 1.46, and 10.41%. The MIC50

and MIC90 were 16 and 64 μg/mL, respectively.

Establishment of COWT

The MIC distributions (1–64 μg/mL) for APR were sta-
tistically consistent with a normal distribution (skew-
ness = 0.194 and kurtosis = 0.386). Non-linear regression
curve fitting of cumulative log2 MIC data was selected as
the preferred method for determining the means and
standard deviations of MIC distributions owing to the
normal (Gaussian) distribution is widely accepted. The
process involves fitting an initial subset and generating
estimates (in log2) of the strain number, mean and

Fig. 1 a: The original MICs distributions; b: cumulative MICs distributions of APR against E.coli
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standard deviation in the subset. Repeat this process by
reducing the previous subset in each successive column
to create the next subset, and repeat the curve fitting
until it is clear that there is a subset in which the abso-
lute difference between the true and estimated separ-
ation numbers is the smallest. The optimum MIC range
from 0.5 to 256 μg/ml was obtained from non-linear re-
gression, the five subsets examined demonstrated that
the subset ‘MIC = 32 μg/ mL’ gave the minimum differ-
ence (Table 1 and Fig. 2). The probability of an MIC at
32 μg/ml was 99.18%, which encompassed 95% of the
WT isolates according to the NORMDIST function in
Microsoft Excel (Table 2). As a result, the COWT was
defined as 32 μg/mL.

The prevalence of APR resistance genes
A total number of 310 E.coli clinical isolates containing
different MIC subsets (0.5-256 μg/mL) were conveni-
ently selected for the detection of three resistance genes
(aac(3)-IV; npmA; apmA) in E. coli by PCR. The preva-
lence of APR resistance genes presented in Table 3. All
the 310 E.coli clinical isolates were negative for npmA
and apmA gene by PCR. The only resistance gene in
E.coli that confer resistance to APR is aac(3)-IV in this
study. The prevalence of aac(3)-IV gene was 91.59% (98/
107) in the subset ‘MIC = 256 μg/ mL’; was 64.71% (11/
17) in the subset ‘MIC = 128 μg/ mL’; was 36.36% (8/22)
in the subset ‘MIC = 64 μg/ mL’; was 1.14% (1/88) in
the subset ‘MIC = 32 μg/ mL’ and was 0 in the subset
‘MIC = 0.5-16 μg/ mL’. The percentage of aac(3)-IV
gene in different MIC subsets is shown in Fig. 3.

Discussion
APR, an aminoglycoside antibiotic, was used in veterin-
ary therapy and animal husbandry in the early 1980’s in
several European countries and was approved to use in
China since 1999 [4]. However, a recent study demon-
strated that APR is a promising drug candidate for the
treatment of systemic Gram-negative infections that are
resistant to treatment with other aminoglycoside antibi-
otics by evaluating the in vitro activity of APR against

multidrug-, carbapenem- and aminoglycoside resistant
Enterobacteriaceae and Acinetobacter baumannii in pa-
tient from Europe, Asia, Africa and South America [6].
In this study, the results that 171 isolates among the
1230 E.coli clinical isolates had MICs ≥64 μg/ mL were
similar to the previous study [24]. Resistant E. coli are
generally isolated from diseased pigs in our study, and E.
coli from pigs may be an important reservoir for transfer
of APR-resistance genes or APR-resistant bacteria to
humans [20]. Marshall and Levy, 2011 summarized the
evidence from animal on farms to human transfer of re-
sistant bacteria. One is to acquire resistance by direct
contact with animals, and the other is the spread of anti-
biotic resistance through the food chain [25]. The effect
of antimicrobial usage on the prevalence of resistant
bacteria in animals is significant [26].
Phenotypic resistance is commonly interpreted accord-

ing to the clinical standards and recommended break-
points from the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) or the CLSI. For ami-
noglycosides, the MIC breakpoints of amikacin, GEN,
netilmicin and tobramycin were established by EUCAST,
and the MIC breakpoints of netilmicin, kanamycin, ami-
kacin, tobramycin and GEN were established by CLSI.
However, the MIC breakpoint of APR was not estab-
lished by either EUCAST or CLSI. To set breakpoints
required a combination of MIC values, pharmacokinetic/
pharmacodynamic relationship and clinical outcome
data [21]. However, it is very difficult and expensive to
generate this kind of data required for breakpoint deter-
mination. The COWT is a useful tool for the interpret-
ation of antimicrobial susceptibility testing results
conducted in laboratories [21]. In this study, the COWT

was defined as ≤32 μg/mL by using a statistical method
recommended by CLSI and was similar with that the
epidemiological cut-off value (ECOFF) routinely used for
APR was >16 μg/ mL by the Laboratory of Swine dis-
eases, Kjellerup, Denmark and by the Danish Veterinary
Institute, Frederiksberg, Denmark [27]. Different use of
apramycin in pigs and chickens results in different sus-
ceptibility of clinical E. coli strains to apramycin. Tian

Table 1 Optimum non-linear least squares regression fitting of pooled MICs (μg/mL) for apramycin and E.coli

Subset
fitted

Number of isolates Mean MIC (log2) Standard deviation (log2)

TRUE Est. Diff. ASE Est./ASE 95% CIb Est. ASE Est./ASE 95% CIa Est. ASE Est./ASE 95% CIb

≤256 1230 1127 − 103 25.61 44.00625 1066 to 1188 3.3 0.08125 40.5785 3.105 to 3.489 0.85 0.1107 7.66215 0.5863 to 1.110

≤128 1102 1085 −17 8.104 133.8845 1066 to 1105 3.24 0.02282 141.9369 3.183 to 3.295 0.78 0.03112 25.04177 0.7032 to 0.8555

≤64 1084 1075 −9 8.468 126.9485 1054 to 1097 3.23 0.02011 160.4177 3.174 to 3.277 0.76 0.02713 28.16439 0.6944 to 0.8339

≤32b 1059 1063 4 11.9 89.32773 1030 to 1096 3.21 0.02189 146.6423 3.149 to 3.271 0.75 0.02867 26.03767 0.6669 to 0.8260

≤16 901 981 80 7.849 125.0223 956.3 to 1006 3.11 0.009864 315.3893 3.079 to 3.142 0.64 0.01352 47.20414 0.5952 to 0.6812

Est., non linear regression estimate of value; Diff., estimate of N minus true N; ASE, asymptotic standard error; Est./ASE, estimate divided by asymptotic
standard error
a 95% CI of estimate of value
b This subset gave the smallest difference between the estimate and true number of isolates in the subset
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et al. 2019 reported that “from 2016 to 2018, a total of
1412 E. coli from chickens were identified in 10 Chinese
provinces. MIC 50 and MIC 90 for apramycin against E.
coli (0.5~256 μg/mL) were 8 and 16 μg/mL, respect-
ively.” [28]. They conclude that the ECV (COWT) for
APR in E. coli is 16 μg/mL. The percentage of E. coli iso-
lates at each MIC (0.5 to 256 μg/mL) is very different be-
tween Tian et al. 2019 and this study. Therefore, we
think that the COWT (ECV) different form Tian et al.
2019 is reasonable.
To date, it has been determined that two resistance

genes in E. coli (aac(3)-IV, npmA) confer resistance to
APR [13, 14]. The gene aac(3)-IV is the only identified

gene causing enzymatic cross-resistance between APR
and GEN [29]. GEN is a critically important drug and is
generally combinated with beta-lactam as the first choice
antimicrobial for severe human infections [19]. In this
study, the high prevalence of aac(3)-IV gene was ob-
served in the resistant E.coli isolates, which was consis-
tant with other previous studies [4, 19, 30–32]. The
npmA gene, confers high resistance to many aminogly-
coside types upon the host E. coli, was originally found
in an E.coli strain isolated in 2003 from the urine of an
inpatient in a general hospital in Japan [14] and did not
appear in the scientific literature until August 2017 from
China [33]. The npmA gene was not detected in any

Fig. 2 Iterative non-linear regression curve fitting with decreasing subsets. X axis = Log2MIC, Y axis = numbers of isolates. Numbers below each
graph are the values for the true number of isolates included in the dataset (True n), the non-linear regression estimate (Estimated n) and the
difference between these two values of n (Difference). O = observed numbers; solid line = fitted curve

Table 2 The probability estimation of COWT with NORMDIST function in microsoft excel

Optimum MIC (μg/mL) Log2 Mean MIC Mean MIC Log2SD High cut-off (μg/mL) Probability of a higher value

≤256 3.21 9.25 0.7465 256 100.00%

≤128 3.21 9.25 0.7465 128 100.00%

≤64 3.21 9.25 0.7465 64 99.99%

≤32a 3.21 9.25 0.7465 32 99.18%

≤16 3.21 9.25 0.7465 16 85.50%
athe wild type cut-off value
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samples in this study, which consistant with other previ-
ous study [34]. The apmA gene was at first detected in
bovine methicillin-resistant Staphylococcus aureus
(MRSA) of sequence type 398 in 2011 [15] and was not
found in any isolates in our study. Due to only the
aac(3)-IV gene was found in all APR resistant isolates
tested, suggesting that it is the predominant gene re-
sponsible for this resistance pattern in the pigs. The risk
of transfer of APR/GEN cross-resistant resistant gene
aac(3)-IV in E.coli from animals to humans is of great
concern.

Conclusion
Given the lack of interpretion criteria of APR suscepti-
bility testing, the COWT (≤ 32 μg/mL) for APR against
E.coli was established by using a statistical method rec-
ommended by CLSI in this study. The prevelance of
APR resistance gene aac(3)-IV mainly concentrated in

these MIC subsets “MIC ≥ 64 μg/ mL”, which indicates
that the COWT established in our study is reliable. The
COWT offers guidance for APR susceptibility testing of
E.coli isolated from animals.

Methods
Isolates
The rectal swabs collected on each visit from the target
animals were pooled and tested as one analytical sample.
A total of 1230 E.coli isolates were used in the study,
which including 858 isolates identified from rectal swabs
of pigs in different province in China by using the bio-
chemical identification and PCR method according to
‘Bergey’s Manual of Determinative Bacteriology’ [35]:
Heilongjiang (n = 293), Jilin (n = 151), Liaoning (n = 238),
Henan (n = 97), Shandong (n = 30), Hubei (n = 20), and
Yunnan (n = 29) from June 2014 to April 2017, and 372
E.coli strains were respectively donated by National Key

Table 3 The prevalence of resistance genes that confer resistance to APR in E. coli

MIC subset of
APR (μg/mL)a

Total
isolates

Resistance gene (%)

Positive no. of aac(3)-IV Positive no. of npmA Positive no. of apmA

256 107 98 (91.59%) 0 (0) 0 (0)

128 17 11 (64.71%) 0 (0) 0 (0)

64 22 8 (36.36%) 0 (0) 0 (0)

32 88 1 (1.14%) 0 (0) 0 (0)

16 32 0 (0) 0 (0) 0 (0)

8 20 0 (0) 0 (0) 0 (0)

4 20 0 (0) 0 (0) 0 (0)

2 2 0 (0) 0 (0) 0 (0)

1 1 0 (0) 0 (0) 0 (0)

0.5 1 0 (0) 0 (0) 0 (0)

Fig. 3 Percentage of aac(3)-IV gene in different MIC subsets
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Laboratory of Veterinary Biotechnology, Harbin Veterin-
ary Research Institute, Chinese Academy of Agricultural
Sciences (n = 108), Husbandry and Veterinary College,
Jilin University (n = 112), and College of Animal Hus-
bandry and Veterinary Science, Henan Agricultural Uni-
versity (n = 152). All of the bacterial isolates were
confirmed by polymerase chain reaction (PCR) [36].

Chemicals and reagents
Pure powder of APR was purchased from Zhejiang
Hisun Pharmaceutical Co., Ltd., Taizhou, China. Mac-
Conkey medium, eosin-methylene blue medium,
Mueller-Hinton (MH) broth, and MH agar were sup-
plied form Qingdao Hope Bio-Technology Co., Ltd.,
Qingdao, China. Premix Taq™ Version 2.0 plus dye and
DL1000 DNA Marker were obtained from Takara Bio-
technology Co., Dalian, China. All primers used in the
study were synthesized by the Sangon Biotech Co., Ltd.,
Shanghai, China.

Antibacterial susceptibility testing
Broth microdilution testing was performed according to
the CLSI document M07-A9 [37] at the following la-
boratories: Department of Microbiology, Department of
Pharmacology and Toxicology, and Pharmacy Depart-
ment in Northeast Agricultural University, Harbin,
China. APR stock solution of 5120 μg/mL was prepared.
Working solutions in plates were prepared by two-fold
serial dilutions in MH broth. Finally, each well of 96 well
plates contains approximately 5 × 105 CFU/mL E.coli and

APR concentrations ranged from 0.5 to 256 μg/mL.
Plates were placed in a constant temperature incubator
at 37 °C for 20 h. Quality control (QC) isolate E.coli
ATCC 25922 (purchased from the NATIONAL CENT
ER FOR MEDICAL CULTURE COLLECTIONS, Beijing,
China) was used on each day of testing as recommended
by CLSI [37]. Only those results, for which the QC MICs
were within the established reference range (4-8 μg/mL),
were used in the study [38]. All MICs determinations
were performed in triplicate.

Data analysis
The definitions of the subsets, lognormal distribution,
skewness, kurtosis, and COWT are presented in Table 4.
The MICs were transformed into log2 values in order to
analyze the MIC distributions. The kurtosis and skew-
ness of each MIC distribution were tested. To confirm
the presence of more than one MIC distribution, fre-
quency distributions of MIC data were analyzed by non-
linear least squares regression analysis based on the
following Cumulative Gaussian Counts equation: Z =
((X-Mean))/SD, Y=N*zdist(z) according to the previous
study [41], in which the Mean is the average of the ori-
ginal distribution, from which the frequency distribution
was created; SD is the standard deviation of the original
distribution (calculated by Graphpad prism 6.0 software,
San Diego, CA). Three parameters, the total number (N)
in the presumed unimodal distribution, the mean, and
SD (both log2) were estimated. N was estimated rather
than taken as a constant in the regression, because of

Table 4 Definitions of the terminology used in this study

Terminology Description Reference

Subsets Subsets of data extracted from datasets [22]

Lognormal Distribution A frequency (probability) distribution where the data are distributed in a Gaussian (normal)
manner after the data points have been converted to logarithms.

[22]

Skewness Lack of symmetry in a frequency distribution. [22]

Kurtosis Excessive peaking or flattening of a frequency distribution when compared with the normal
distribution.

[22]

COWT COWT also known as the epidemiological cutoff (ECV), defined as the highest susceptibility
endpoint of the wild-type (WT) population MIC, has been shown to detect the emergence
of in vitro resistance or to separate WT isolates (without known mechanisms of resistance)
from non-WT isolates (with mechanisms of resistance and reduced susceptibilities to the
antibacterial agent being evaluated). COWT are calculated by taking into account the MIC
distribution, the modal MIC of each distribution, and the inherent variability of the test
(usually within one doubling dilution) and should encompass ≥95% of isolates.

[22, 39, 40]

Table 5 The primers used in the detection of APR resistance genes and expected amplicon sizes

Gene DNA sequence (5′–3′) Product (bp) Reference

aac(3)-IV aac(3)-IV F
aac(3)-IV R

TCGGTCAGCTTCTCAACCTT
GATGATCTGCTCTGCCTGTG

314 [43]

npmA npmA F
npmA R

CTCAAAGGAACAAAGACGG
GAAACATGGCCAGAAACTC

641 [43]

apmA apmA F
apmA R

CGTTTGCTTCGTGCATTAAA
TTGACACGAAGGAGGGTTTC

656 [15]
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the desire to fit the data to the distribution without as-
suming that N truly contained only wild-type isolates
[22]. The NORMINV and NORDIST functions in
Microsoft Excel were used to set the WT distribution
cutoffs which were used to determine the MIC that en-
compass at least 95% of that distribution [22, 42].

Molecular characterisation of mechanisms of resistance to
APR
A total number of 310 E.coli strains from different MIC
subsets (0.5–256 μg/mL) were conveniently selected for
the detection of resistance genes in E. coli that confer re-
sistance to APR by PCR. The primers used in this study
are presented in Table 5. Genomic DNA was extracted
using a TIANamp Bacteria DNA Kit (TIANGEN BIO-
TECH (BEIJING) CO., LTD.) according to the manufac-
turer’s instructions. Then, 2 μL (400 ng/μL) was added
to a reaction mixture containing 25 μL Premix TaqTM
Version 2.0 plus dye, 13 μL sterile ddH2O, 5 μL 10 μM
primer F and 5 μL 10 μM primer R. Amplification condi-
tions were 94 °C for 5 min, followed by 30 cycles of 94 °C
for 30 s, 55 °C for 30 s (52 °C for apmA) and 72 °C for 1
min, and a final elongation at 72 °C for 10 min. PCR
products were analysed on 1.5% (w/v) agarose gels-
stained with ethidium bromide. The amplified products
were sequenced by the Sangon Biotech Co., Ltd., Shang-
hai, China. E. coli ATCC 25922 strains was used as nega-
tive controls.
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