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Abstract

Background: Johne’s disease (JD) is a chronic intestinal inflammatory disease caused by Mycobacterium avium
subsp. paratuberculosis (MAP) infection in ruminants. Since there are currently no effective vaccine or treatment
options available to control JD, genetic selection may be an alternative strategy to enhance JD resistance.
Numerous Single Nucleotide Polymorphisms (SNPs) have been reported to be associated with MAP infection status
based on published genome-wide association and candidate gene studies. The main objective of this study was to
validate these SNPs that were previously identified to be associated with JD by testing their effect on Holstein bulls’
estimated breeding values (EBVs) for milk ELISA test scores, an indirect indicator of MAP infection status in cattle.

Results: Three SNPs, rs41810662, rs41617133 and rs110225854, located on Bos taurus autosomes (BTA) 16, 23 and
26, respectively, were confirmed as significantly associated with Holstein bulls’ EBVs for milk ELISA test score (FDR <
0.01) based on General Quasi Likelihood Scoring analysis (GQLS) analysis. Single-SNP regression analysis identified
four SNPs that were associated with sire EBVs (FDR < 0.05). This includes two SNPs that were common with GQLS
(rs41810662 and rs41617133), with the other two SNPs being rs110494981 and rs136182707, located on BTA9 and
BTA16, respectively.

Conclusions: The findings of this study validate the association of SNPs with JD MAP infection status and highlight
the need to further investigate the genomic regions harboring these SNPs.
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Background
Johne’s disease (JD), also known as paratuberculosis,
manifests as chronic enteritis in cattle and is caused by
infection with the Gram-positive bacteria Mycobacterium
avium subsp. paratuberculosis (MAP). With its worldwide
prevalence, the disease is responsible for significant

economic losses to the dairy industry [1]. Albeit contro-
versial and debatable, JD etiological agent MAP is also
viewed as a pathogen with zoonotic effects. Report of iso-
lation of MAP from intestines of human patients suffering
from Crohn’s disease has raised public health concerns
[2]. Factors like non-availability of an efficacious vaccine
to combat MAP infection, issues associated with currently
available JD diagnostic assays such as long turnaround
time associated with MAP culture tests, low sensitivity of
ELISA tests during early stages of JD, and absence of
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efficient treatment options have limited JD control around
the world [3]. Heritability estimates using different pheno-
types of JD have been reported and are found to range
from 0.06 to 0.27 [4–7] suggesting that there is enough
genetic variation to enable selection for reduced suscepti-
bility to MAP infection [8]. Given the low-to-moderate
heritability estimates of JD resistance, the difficulty to col-
lect accurate phenotypes on a large number of animals,
and the fact that that animals are tested for MAP infection
at a later life stage (i.e., do not have own record at selec-
tion stage), the use of genomic information is a promising
way to make genetic progress for JD resistance.
Genome-wide association (GWAS) and candidate gene

studies concerning JD have identified numerous single
nucleotide polymorphisms (SNPs) across the bovine
genome which are significantly associated with JD status
in dairy cattle [9–17]. The identification of JD associated
SNPs and the heritable nature of MAP infection reflect
the genetic variation in susceptibility and resistance to
JD. These identified SNPs could be used in JD resistance
breeding programs based on marker-enhanced selection
(MES) once they are included in genotyping platforms.
However, before this can occur there is a need to validate
them, especially using independent cattle populations.
In a recent study by Brito et al. [18], the authors re-

ported genetic parameters such as heritability for MAP-
specific antibody response and estimated breeding values
(EBVs) for Holstein cattle based on milk ELISA test re-
cords along with their correlation with other economically
important trait like milk yield; and other routinely evalu-
ated traits such as somatic cell score (SCS); reproduction
traits (calving to first service, 56-d non-return rate, Num-
ber of services, cows, First service to conception, cows,
Days open; longevity trait (Direct herd life); and confirm-
ation traits (Overall feet and legs, Overall conformation).
Milk ELISA is a JD diagnostic method that detects MAP-
specific antibodies in animals exposed to MAP and is
therefore an indirect indicator of MAP infection status in
cattle [19]. Unlike direct diagnostic tests based on MAP
culture tests, MAP ELISA test have a quick turnaround
time and can be easily used at the herd level. As studies
concerning validation of JD SNPs are lacking, sires with
highly accurate EBVs for milk ELISA testing can be used
to validate previously identified JD SNPs. Therefore, the
main objective of this study was to validate some of the
previously associated JD SNPs in literature by testing their
association with sire EBVs for milk ELISA test score.

Results
A total of 141 SNPs passed the quality control test for
MAF threshold and were included in the association
analyses. After the General Quasi Likelihood Scoring
(GQLS) association analysis, the SNPs rs41810662
(P-value = 0.00011), rs41617133 (P-value = 4.5E-06)

and rs110225854 (P-value = 6.4E-19) were found to be sig-
nificantly associated with Holstein sire EBVs for milk
ELISA test scores at a FDR of 1%, and no other SNPs were
found to be significant at a FDR of 5%. Table 1 lists the
significant SNPs based on GQLS analysis. The Manhattan
plot of GQLS analysis is shown in Fig. 1. A total of four
SNPs were found to be significantly associated with sire
EBVs by single-SNP regression analysis. This included the
SNPs rs41810662 (P-value = 0.00062) and rs41617133 (P-
value = 0.00050) that were also identified in the GQLS
analysis; and two other SNPs, rs110494981 (P-value =
9.0E-05) and rs136182707 (P-value = 0.00088), which are
located on BTA9 and BTA16, respectively. Table 2 lists all
the significant SNPs along with their estimated SNP effect
based on single-SNP regression analysis. The Manhattan
plot of single SNP regression analysis is shown in Fig. 2.

Discussion
With a global herd level prevalence ranging between 7
and 60% [20], Johne’s disease is a severe production lim-
iting disease with significant animal welfare concerns to
the worldwide dairy industry. Annual production losses
due to JD on US dairy industry alone is estimated to be
to $200–$250 millions dollars [1]. The losses associated
with JD are mainly due to reduction in milk production,
premature culling of JD positive animals, the manage-
ment costs associated with JD control programs to limit
MAP spread within and across the herds [21]. The role
of host genetics in influencing JD infection status in cat-
tle has been extensively studied, which resulted in the
identification of several impactful genetic markers across
the cattle genome [18]. However, studies concerning val-
idation of genetic markers are still lacking. In this study,
we validated some SNPs previously associated with JD
by testing their association with breeding values esti-
mated for JD milk ELISA test scores. A total of 498 bulls
were classified into high (n = 248) and low (n = 250)
groups based on their EBVs for milk ELISA test scores.
Both groups were then genotyped using a customized
SNP panel comprising 155 of the most prominent JD
SNPs reported in the literature, including SNP from
studies that used phenotypes other than milk ELISA test
to define the case-control populations. Two association
analyses were used to carry out SNP validation: a) Gen-
eral Quasi Likelihood Scoring (GQLS) analysis based on
logistic regression, and, b) single-SNP regression.
Three SNPs rs41810662, rs41617133 and rs110225854

were found to be significantly associated with Holstein
sire EBVs using GQLS analysis at 1% FDR. The associ-
ation of these three SNPs with sire EBVs in the current
study confirmed their association with JD. The SNP
rs41810662 is located on BTA16 and was previously
found to be associated with MAP antibody response in
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Holstein cows [22]. The other two SNPs (rs41617133
and rs110225854) are located on BTA23 and BTA26, re-
spectively, and were previously reported to be associated
with JD susceptibility in Holsteins [14]. These last two
SNPs were selected from a GWAS study that used fecal
culture along with blood ELISA to define MAP infection
status. This may be indicative of the shared genomic re-
gion in Holstein cattle that influences both JD fecal cul-
ture and ELISA positivity and a stronger evidence of
these SNPs’ role towards resistance to MAP infection.
A total of four SNPs were found to be significantly

associated with sire EBVs by single-SNP regression ana-
lysis at 5% FDR. This included the SNPs rs41810662 and
rs41617133 that were also identified in the GQLS analysis;
and two other SNPs, rs110494981 and rs136182707,
which are located on BTA9 and BTA16, respectively. The
SNP rs110494981 was previously found to be associated
with serum ELISA positivity for MAP antibodies in Italian
Holsteins [13], whereas rs136182707 was previously iden-
tified by Mallikarjunappa et al. [22] and was found to be
associated with MAP antibody ELISA positivity.
One main result from this study is that most of the

SNPs (137 out of 141) were not found to be significant
in the population under study. This is not uncommon
and may have multiple causes. While several GWAS
studies have enabled identification of many SNPs associ-
ated with MAP infection status in cattle, there seems to

be little congruence among them, which confirms the
complex polygenic nature of the disease [8, 18]. Among
other factors, the choice of phenotype (e.g., milk or
blood ELISA, fecal MAP culture, tissue MAP culture)
used to define infection status in case-control studies is
shown to impact results [23]. Each test differs in their
specificity and sensitivity in accurately diagnosing MAP
infection and results are often dictated by the stage of
disease progression in the tested animal [24]. As a result,
precise phenotyping of infected versus non-infected ani-
mals remains a challenge.
Milk ELISA is an indirect test for diagnosing MAP in-

fection status that is based on identification of MAP-
specific antibodies in MAP exposed animals. Unlike
MAP culture techniques that take weeks to diagnose
MAP infection, ELISA tests are more feasible at the herd
level because of their rapid turn-around time and meas-
urement cost. The objective of this study was to validate
the previously reported JD SNPs reported in the litera-
ture. For this, we utilized sire EBVs estimated for milk
ELISA test score to validate JD SNPs and confirm their
association. As the sire EBVs used here were estimated
using a large dataset of milk ELISA records, testing the
association of JD SNPs with sire EBVs allows their valid-
ation at a large population level, while reducing the costs
associated with genotyping large number of daughters.
Genome-wide studies using EBVs to estimate SNP

Table 1 List of significant SNPs associated with sire EBVs for milk ELISA, based on the GQLS method

SNP rsID SNP name BTA Position (bp) MAF P-value FDR

rs41810662 BovineHD1600015492 16 55,677,310 0.30 0.00011 1%

rs41617133 Hapmap51130-BTA-105627 23 32,876,929 0.20 4.5E-06 1%

rs110225854 ARS-BFGL-NGS-114768 26 38,924,276 0.15 6.4E-19 1%

MAF Minor Allele Frequency; BTA Bos taurus autosome; FDR False Discovery Rate;

Fig. 1 Manhattan plot for General Quasi Likelihood Score association analysis. A total of 3 SNPs across 3 chromosomes (BTA16, BTA23 and BTA26)
were found to be significant at FDR < 0.01
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effects have been previously reported [25]. We adapted
selective genotyping approach in our study where sires
with EBVs estimated for milk ELISA results were classi-
fied into high and low groups and were subsequently ge-
notyped. This approach of genotyping animals with
extreme phenotypes reduces the need to genotype large
number of animals and also increases power in deter-
mining the association of variants/SNPs in customized
genotyping study like ours [26, 27].
Only few SNPs were validated while using EBVs esti-

mated for milk ELISA test results. The specificity of
milk ELISA test is high (99%); however, it lacks sensi-
tivity during early stages of MAP infection [28]. This
could perhaps have influenced the results of this study.
Kirkpatrick et al. [8] reported that combining fecal cul-
ture and ELISA tests is more suitable in defining MAP
infection status. Future studies could aim at determin-
ing EBVs for both tests combined to validate other JD
SNPs. Two SNPs (rs41810662 and rs136182707) that
were validated in this study were previously reported in
a GWAS we conducted with Canadian Holstein cows
for which no pedigree information was available [22].
Since no pedigree information was available for these

Canadian Holsteins cows, their relatedness with the
Canadian sires used in the current study could not be
explained.
To the best of our knowledge, this is one of the first

studies that considered validation of SNPs associated
with JD reported in the literature using sire EBVs for
milk ELISA test score. A follow-up study will consider
search for gene variants in the same chromosomal areas
as the identified SNP, which could play a role in JD re-
sistance. One of the limitations associated with the
current study is that validation was limited to a relatively
small number of selected JD SNPs from GWAS and can-
didate gene studies from the literature. Future studies
could consider validation of a larger number of reported
JD SNPs using different (and ideally independent) dairy
cattle populations.
The problems related with JD control, and the eco-

nomic and welfare implications of the disease on the
dairy industry, warrant extensive exploration of genetic
selection as an alternative option to control JD. This be-
gins with the validation of associated genetic markers.
Validation of some of the SNPs in this study is a step in
this direction and has prompted future consideration of

Table 2 List of significant SNPs associated with sire EBVs for milk ELISA, based on the single-SNP regression method

SNP rsID SNP name BTA Position (bp) MAF P-value FDR b

rs110494981 ARS-BFGL-NGS-8531 9 44,713,803 0.24 9.0E-05 5% 0.00870

rs136182707 BovineHD1600014724 16 53,247,138 0.43 0.00088 5% 0.00680

rs41810662 BovineHD1600015492 16 55,677,310 0.30 0.00062 5% 0.00719

rs41617133 Hapmap51130-BTA-105627 23 32,876,929 0.20 0.00050 5% 0.00368

MAF Minor Allele Frequency; BTA Bos taurus autosome; FDR False Discovery Rate; b – variance explained by SNP relative to the Standard Deviation of EBVs after
correcting for selective genotyping

Fig. 2 Manhattan plot for Single SNP regression analysis. A total of 4 SNPs across 3 chromosomes (BTA9, BTA16 and BTA23) were found to be
significant at FDR < 0.05
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similar validation studies using different phenotypes. It
is a critical step before genetic marker-based selection
can be implemented to breed for JD resistance in cattle.

Conclusions
Using sire EBVs estimated for milk ELISA test scores, a
total of four previously reported JD related SNPs were
validated in this study which can be used to optimize
genomic selection schemes. Future studies will consider
exploring the genomic regions surrounding the validated
SNPs for the presence of any candidate genes and gen-
etic variants with relevance to JD.

Methods
Resource population, phenotype classification and
genotyping
The EBVs for Holstein sires were calculated for milk
ELISA test score as described earlier by Brito et al. [18].
These EBVs were estimated using univariate linear ani-
mal models using different data subsets in 3 different
scenarios: a) the complete data set (all herds); b) herds
with at least one suspect or test-positive animal (ELISA
optical density ≥ 0.07); and c) SCEN3: herds with at least
one test-positive animal (ELISA optical density ≥ 0.11).
Out of 5285 sires with EBVs estimated for milk ELISA
test score, a total of 498 were classified into high (n =
248) and low (n = 250) EBV groups for selective geno-
typing. The EBVs of the selected sires from both the
groups ranged from − 0.0677 to 0.0275 with a standard
deviation of 0.0151. All sires had at least 30 daughters.
Genotyping was performed using a customized SNP
panel comprised of 155 of the most prominent JD SNPs
reported in the literature, which included SNP from
studies that used phenotypes other than milk ELISA to
define their case-control populations (such as serum
ELISA, tissue and fecal MAP culture) and SNPs from
candidate-gene studies [[9, 10, 12–14, 17, 22, 29–37];
Supplementary File A]. These SNPs were located on all
Bos taurus autosomes (BTA) except BTA 24. A pedigree
file containing 7479 animals was generated by tracing
back the pedigrees of sires with data up to 18 genera-
tions ago.

Quality control and statistical analyses
Quality control was applied to remove SNPs with minor
allele frequency (MAF) less than 0.01 (or 1%). The asso-
ciation analysis was carried out using the Generalized
Quasi-Likelihood Score method (GQLS) [38], imple-
mented in the SNP1101 software [31]. The GQLS
method is based on logistic regression and involves re-
gression of EBVs versus SNP genotypes which are con-
sidered as response variables [38]. It further accounts for
population substructure, by adjusting for relatedness
among selected animals based on the pedigree-based

relationship coefficients [39], and is not biased for select-
ive genotyping. The GQLS statistical model can be de-
fined as:

μi ¼ E Y ijXið Þ ¼ eβ0þβ1Xi

1þ eβ0þβ1Xi

Where μi is the expected SNP allele frequency; Xi is
the pseudo-phenotype (sire EBVs); Yi is the genotype of
the SNP, considering Yi = 1/2 * (genotype code for the
ith animal). The genotypes were coded as “0”, “1”, and
“2” based on the number of reference alleles, corre-
sponding to the respective proportions of 0, 1/2 and 1;
β0 is a constant and β1 is the slope coefficient. In order
to verify the association between each marker and the
trait (sire EBV for milk ELISA test score), the null hy-
pothesis was: H0: β1 = 0, i.e. the marker is not associated
with the trait; while the alternate hypothesis was: H1:
β1 ≠ 0, i.e. the marker is associated with the trait. To ac-
count for testing of multiple comparisons and identify
significant SNPs associated with sire EBVs, genome-wise
false discovery rates (FDR) of 1 and 5% were applied. In
addition to GQLS analysis, single-SNP regression ana-
lysis including the additive polygenic effect was carried
out. Unlike GQLS analysis, single-SNP regression allows
for accounting for polygenic effect. The single-SNP re-
gression model can be defined as:

y ¼ μþ bxþ Zaþ e

where y is a vector with the sires’ EBV for milk ELISA
test scores; μ is the overall mean value of the EBVs; b is
the additive allele substitution effect (linear regression
coefficient) of a SNP; x is the vector of number of copies
of a given SNP allele (coded as 0, 1, or 2 for BB, AB, and
AA, respectively); Z is the incidence matrix linking addi-
tive polygenic effects to bull EBVs; a is the vector of
additive polygenic effects; and e is a vector of the re-
sidual effects. The model assumptions are as follows: a
follows a normal distribution N (0, Gσ2a), in which G is
the genomic relationship matrix [40], and σ2a is the
additive genetic variance.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12917-020-02381-9.

Additional file 1: Supplementary File A: List of SNPs used in the
custom genotype panel.
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