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Abstract

Background: Diversity and composition of microbial communities was compared across the 13 major sections of
the digestive tract (esophagus, reticulum, rumen, omasum, abomasum, duodenum, jejunum, ileum, cecum,
ascending colon, transverse colon, descending colon, and rectum) in two captive populations of American bison
(Bison bison), one of which was finished on forage, the other on grain.

Results: Microbial diversity fell to its lowest levels in the small intestine, with Bacteroidetes reaching their lowest
relative abundance in that region, while Firmicutes and Euryarchaeota attained their highest relative abundances
there. Gammaproteobacteria were most abundant in the esophagus, small intestine, and colon. The forage-finished
bison population exhibited higher overall levels of diversity, as well as a higher relative abundance of Bacteroidetes
in most gut sections. The grain-finished bison population exhibited elevated levels of Firmicutes and
Gammaproteobacteria. Within each population, different sections of the digestive tract exhibited divergent microbial
community composition, although it was essentially the same among sections within a given region of the
digestive tract. Shannon diversity was lowest in the midgut. For each section of the digestive tract, the two bison
populations differed significantly in microbial community composition.

Conclusions: Similarities among sections indicate that the esophagus, reticulum, rumen, omasum, and abomasum
may all be considered to house the foregut microbiota; the duodenum, jejunum, and ileum may all be considered
to house the small intestine or midgut microbiota; and the cecum, ascending colon, transverse colon, descending
colon, and rectum may all be considered to house the hindgut microbiota. Acid from the stomach, bile from the
gall bladder, digestive enzymes from the pancreas, and the relatively low retention time of the small intestine may
have caused the midgut’s low microbial diversity. Differences in microbial community composition between
populations may have been most strongly influenced by differences in diet (forage or grain). The clinical condition
of the animals used in the present study was not evaluated, so further research is needed to establish whether the
microbial profiles of some bison in this study are indeed indicative of dysbiosis, a predisposing factor to ruminal
acidosis and its sequelae.
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Background

Ruminants, like all vertebrate herbivores, rely on vegeta-
tion for nourishment, but are unable to digest plant
fibers without the aid of symbiotic microbes in their di-
gestive tract [1]. Most of the ruminant digestive system
is a favorable environment for microbes, as body
temperature is warm and stable at around 39 °C [2].
However, the digestive tract is also a challenging envir-
onment for microbes given that they must compete for
space and nutrients [3] Moreover, although ruminants
provide their symbionts with abundant resources, most
are in the form of cellulose, which is difficult to break
down [4]. The reticulorumen and omasum are weakly
acidic with a pH of 5.5-6.5, which is favorable for many
microbes [5]. These sections house most of the rumi-
nant’s symbiotic microbiota. Bacteria and protozoa are
predominant, accounting for 40-60% of microbial bio-
mass [6]. Bacteria fermenting this material release the
volatile fatty acids (VFAs) acetic, propionic, and butyric
acid, which the host absorbs and metabolizes [1].

As in other mammals, the ruminant gut microbiota is
dominated by the bacterial phyla Firmicutes, Bacteroi-
detes, Actinobacteria, Proteobacteria (especially in the
class Gammaproteobacteria) and Verrucomicrobia (7],
while most archaea are methanogens in the phylum Eur-
yarchaeota [6, 8—10]. Because the different sections of
the ruminant gut present different environmental condi-
tions, the composition of the gut microbiota changes
from one section to another. The first region (a func-
tional grouping of sections) is the foregut, which houses
several common fibrolytic species [11-13], as well as
amolytic, saccharolytic, lactolytic, and proteolytic species
[14—17]. Second, the abomasum has a pH of 2—4, which
kills and digests many of the microbes entering from the
omasum, supplying the host with 60-90% of its amino
acids, which are in turn absorbed in the small intestine
[18-20]; [21]. Third, the small intestine is responsible
for neutralizing acid from the stomach, breaking down
macromolecules with enzymes, and absorbing nutrients.
Microbial biomass drops sharply between the foregut
and small intestine because of the acidity of the aboma-
sum, but then increases caudally as pH rises again from
2 to 4 in the duodenum, to 4-7 in the jejunum, and fi-
nally to 7-8 in the ileum [5]. Finally, the hindgut is the
last site for salt and water balance. In ruminants, this re-
gion is second to the foregut in microbial biomass.
Microbiota in the cecum, colon, and rectum ferment
remaining fiber and produce a variety of vitamins for
their host [1, 22].

Community composition was compared along the en-
tire digestive tract of two captive populations of plains
bison (Bison bison bison). In domestic cattle (Bos taurus
taurus), gut microbiota have been explored in the reticu-
lorumen and feces [23—-26], as well as across more sites
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along the digestive tract [5, 27]. Microbial diversity along
the digestive tract has been researched in humans, ro-
dents, and horses as well [28—30]. However, studies of the
gut microbiota of bison have been limited to the reticu-
lorumen [31-33] and feces [34]. The earlier research on
ruminal microbiota predates high-throughput sequencing,
so it relied on culture-dependent methods that could not
detect much of the microbial diversity found in the gut.
The study by [34] used culture-independent methods to
characterize fecal microbiota in semi-free-ranging wood
bison (B. bison athabascae). In the present study, two re-
lated questions were addressed. One, to what degree does
microbial community composition vary along the length
of the digestive tract in plains bison? Two, does the rela-
tive abundance of a given microbial taxon in a given gut
section differ between two bison populations? It was hy-
pothesized that different sections of the digestive tract
would exhibit differences in microbial diversity and com-
munity composition. Likewise, for a given digestive tract
section, these variables were expected to differ between
the two bison populations.

Methods

Animals and sampling

Thirteen major sections of the alimentary canal for sam-
pling were identified. In anterocaudal order, they were
the esophagus, reticulum, rumen, omasum, abomasum,
duodenum, jejunum, ileum, cecum, ascending colon,
transverse colon, descending colon, and rectum. Four
bison from one population were dissected on site at an
abattoir on one day, and three from another population
a week later, for a total of seven bison. On October 10,
2012, all four bison were grain-finished bulls, aged two-
three years, from Colorado (Population B). On October
16, 2012, all three bison were forage-finished cows, aged
four-fourteen years, from Nebraska (Population A). The
forage-finished diet consisted of 100% roughage for the
lifetime of the animals. In contrast, the grain-finished
diet was 60% corn and 40% roughage from age six
months, with the bison not being returned to forage
prior to slaughter. For all seven individuals, double ster-
ile cotton swabs were used to simultaneously sample the
lumen and mucosa of each section in triplicate, yielding
a total of 273 samples. These were transported on ice in
a cooler, and stored frozen at —20 °C until processing.

DNA isolation, amplification, and sequencing
DNA extractions were then performed on all four of the
grain-fed bison, and on three of the forage-fed bison,
using the MO BIO PowerSoil°-htp 96 Well Soil DNA
Isolation Kit, according to the method in [35].

A portion of the 16S rRNA gene was PCR-amplified
and sequenced to characterize bacterial and archaeal
community composition in the bison digestive tract. To
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amplify these 16S rRNA genes for barcoded high
throughput sequencing, the methods of [36] were
followed. The primer pair 515F / 806R was used with
[lumina adapters, and with a 12-bp error-correcting
barcode unique to each sample on the reverse primer.
The V4-V5 variable region amplified by this primer set
is well-suited to accurate phylogenetic placement of bac-
terial sequences [37]. Together, these primers form a
good “universal” primer set that amplifies nearly all
bacterial and archaeal taxa with few biases [38]. Ampli-
cons were cleaned using the MO BIO PowerClean®
DNA Clean-Up Kit, and quantified using first the
Quant-iT™ PicoGreen® dsDNA Assay Kit, and then the
Thermo Scientific NanoDrop 1000, to determine the
volume needed to produce a single composite sample
with equal representation of each individual sample. The
composite sample was taken to the University of Color-
ado Genomics Core Facility for sequencing on an
[llumina MiSeq machine with the 2 x 150 bp paired-end
protocol.

Data analysis

The QIIME pipeline was used for data analysis. Quality
filtering and processing of reads was performed follow-
ing [39]. Only forward reads were used for downstream
analyses [40]. Samples were standardized using rarefac-
tion, and bacterial 16S rRNA sequences were clustered
into operational taxonomic units (OTUs) at the 97%
similarity level using the RDPII taxonomy [41]. Paramet-
ric and nonparametric statistical approaches were used
to determine if communities varied across gut sections
within each population of bison, as well as for a given
gut section between the two bison populations. The
Shannon index was used to compare diversity levels
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among sections and between populations. Single-factor
ANOVA with the Tukey HSD post-hoc test was used for
comparisons among sections, while t-tests with Bonferroni
corrections were used for comparisons between popula-
tions. Exploratory and multivariate statistics consisted of
hierarchical cluster analysis, SIMPER, principal coordi-
nates analysis (PCoA), and PERMANOVA. Relative
abundance data were square root transformed, and then
used to generate a Bray-Curtis similarity matrix, from
which the PCoA ordination plot was produced. These
analyses were performed in the PRIMER + PERMANOVA
6 software package [42] and in the R programming
language (R [43]).

Results

An average of 37,386 sequences per sample were
retained after quality assurance. Samples were rarefied
to 1000 sequences per sample, yielding a total of 25,428
OTUs across all samples. In Population A, diversity dif-
fered significantly among sections, and was lowest in the
ileum (P < 0.05). Bison from Population B also exhibited
significant differences in diversity among sections
(P < 0.05), but there was no clear trend (Fig. 1A and B).
Population A tended to exhibit significantly higher levels
of diversity for a given gut section. Shannon index values
were higher for bison from Population A in the esopha-
gus, rumen, and jejunum (P < 0.004 in all cases). The
three most common OTUs detected were in the phyla
Bacteroidetes and  Firmicutes.  Paraprevotellaceae
(Phylum Bacteroidetes) was more abundant in the colon
among bison from Population A, and was more abun-
dant in the hindgut generally among bison from Popula-
tion B. Bacteroidales (Phylum Bacteroidetes) was more
abundant in the foregut among bison from both
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marked with different letters were significantly different from one another. a Diversity of the gut microbiota in forage-finished bison, as measured
by the Shannon index. b Diversity of the gut microbiota in grain-finished bison, as measured by the Shannon index
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populations. Finally, Peptostreptococcaceae (Phylum Fir-
micutes) was more abundant in the ileum and cecum
among bison from Population A, but more abundant in
the jejunum and ileum among bison from Population B.
In each population, microbial community composition
varied significantly by gut section, as indicated by PER-
MANOVA (P < 0.05), although not typically within the
same gut region (Figs. 2A-2D). Thus, for a given diet,
the three main fermentation chambers of the foregut
(reticulum, rumen, and omasum) had similar microbial
communities, as did the five main sections of the hind-
gut (cecum, ascending colon, transverse colon, descend-
ing colon, and rectum). Population A also exhibited
similarity in community composition between sections
from two different regions of the digestive tract, namely
the abomasum and duodenum (P = 0.073), and the je-
junum and rectum (P = 0.161). No such extra-regional
similarities were detected in Population B. Bacteroidetes
were at their lowest relative abundance in the small
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intestine, specifically the ileum of bison from Population
A (P < 0.001), and in the duodenum, jejunum, and ileum
of bison from Population B (P < 0.001). In contrast,
Firmicutes had their highest relative abundance in the
small intestine, namely the ileum of bison from Popula-
tion A (P < 0.0001), and the jejunum and ileum of bison
from Population B (P < 0.001). Proteobacteria and
Tenericutes, although the third and fourth most abun-
dant phyla, respectively, exhibited no clear trend across
the digestive tract in either population (P > 0.05).

Gut section had a greater effect on microbial commu-
nity composition than population. Thus, foregut
communities between the two populations were more
similar to each other than they were to hindgut commu-
nities from the same population. Likewise, hindgut
communities resembled each other more than either
resembled corresponding foregut communities (Fig. 3).
This finding was corroborated by SIMPER analysis (Fig. 4),
which indicated that the reticulum, rumen, and omasum
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families represent 27-77% of the microbial community in each gut section
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were more similar to one another in the foregut (average
dissimilarity <11%), while the cecum and descending colon
were similar in the hindgut (average dissimilarity <13%).
However, for a given section, there was a significant ef-
fect of population as well, as indicated by PERMANOVA
(P < 0.05). T-tests were used to compare bacterial rela-
tive abundance at a given taxonomic level between pop-
ulations for each digestive tract section. Here sections
with significantly different relative abundances of bac-
teria are reported. Bacteria in the phylum Bacteroidetes
were more abundant for Population A in the jejunum
(P < 0.001) and ascending colon (P < 0.001). Bacteria in
the phylum Firmicutes were more abundant for Popula-
tion B in the jejunum (P < 0.001) and rectum (P = 0.002).
Bacteria in the phylum Proteobacteria were more abun-
dant for Population B in the omasum (P=0.003), and
those in Class Gammaproteobacteria were more abundant
for Population B in the reticulum (P =0.001), abomasum
(P<0.001), duodenum (P =0.007), and descending colon
(P=0.003). Overall, Ruminococcus (Phylum Firmicutes)
exhibited a higher relative abundance in the hindgut of

bison from Population A, while Prevotella (phylum Bac-
teroidetes) exhibited a higher relative abundance in the
foregut of bison from Population B (Fig. 5).

Discussion

In each population, microbial community composition
was significantly different among gut sections from dif-
ferent regions, but similar among those within the same
region, namely the multi-chambered stomach and large
intestine. This is probably because, although anatomic-
ally partitioned, each of these two regions probably
functions as a unit [44] The present study on bison, like
previous work on cattle [44, 45], sheep [46], and moose
[27, 47] also shows that the microbial communities of
the rumen and colon are distinct. Thus, while fecal sam-
ples can be used as noninvasive colonic samples, they do
not represent ruminal communities. Further work is
needed to determine if microbial taxa or their ratios in
fecal samples may be used as indicators of these or other
taxa in the rumen.
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Fig. 5 Stacked area plots showing the eight most abundant genera on average in each of the 13 sections of the digestive tract. a Bison from
Population A, which were grass-finished. b Bison from Population B, which were grain-finished. Eso = Esophagus, Ret = Reticulum, Rum = Rumen,
Oma = Omasum, Abo = Abomasum, Duo = Duodenum, Jej = Jejunum, lle = lleum, Cec = Cecum, Asc = Ascending colon, Tra = Transverse colon,
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For both bison populations studied, diversity as indi-
cated by the Shannon index appears to be lowest in the
small intestine, and for bison from Population A (forage-
finished), diversity was lowest in the ileum specifically, al-
though the other sections showed no clear trend. The two
dominant bacterial phyla in the digestive tract were the
Bacteroidetes and Firmicutes, as is the case in all known
mammals [48-51]). Bacteroidetes exhibited their lowest
relative abundance in the small intestine, while Firmicutes
reached their highest relative abundance there.

Earlier research has shown that, despite high resource
availability, the small intestine tends to harbor the lowest
levels of microbial biomass and diversity of any gastro-
intestinal section, for two main reasons [52]. The first is
that digesta have a relatively short retention time in the
small intestine due to peristaltic movement, which gives
microbes less time to proliferate there [53]. The second
is the influence of the section just anterior to the small
intestine, the abomasum (true stomach). While the pH
of most gut sections ranges from 5 to 7, the abomasum
has pH levels of 2—4, the lowest of the ruminant digest-
ive tract [6, 54, 55]. Although the small intestine receives
this gastric acid and begins buffering it, that takes time.
Digesta pass through the long ruminant small intestine,
which is about 20 times the length of the animal, or
some 40 m long in bison and cattle. During this time,

pH remains relatively low in the duodenum and je-
junum, and does not return to near neutral levels until
the ileum. In addition to acid, the small intestine also re-
ceives bile from the gall bladder and enzymatic secre-
tions from the pancreas. Together, these three inputs
create a relatively harsh environment for most microbes
[53]. In this environment, the Gram- Bacteroidetes could
be at a disadvantage compared to the Firmicutes, which
have a thick peptidoglycan Gram + cell wall [56].

The effect of gut region on community composition
was stronger than that of population, as microbial com-
munities were more similar in the same region between
populations, than to another region within the same
population (Fig. 3). Nevertheless, the bison from Popula-
tion A (forage-finished) appeared to support greater mi-
crobial diversity in most sections of the digestive tract,
except the ileum. Previous work with captive domestic
cattle has shown that age, sex, and location have less of
an effect on microbial community composition than diet
[25, 57], although the ruminal microbiota of cattle have
been observed to vary with both age and diet [58], and
those of moose (Alces alces) with age, weight, and loca-
tion, but not sex [27, 47]. Like other sexually dimorphic
ungulates, bison exhibit sexual segregation for most of
the year [59]. Accordingly, isotopic and chemical ana-
lyses have shown that bison diets differ with age and sex
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[60, 61] although chloroplast gene sequence-based re-
search has shown that the bison diet does not vary with
age or sex [62]. Differences in age, sex, and location be-
tween bison populations in the present study make in-
terpretation of the results more difficult, but dietary
differences could have had a greater effect on gut com-
munity composition than these other factors. Thus, dif-
ferences in community composition between these
populations for a given gut section may be due primarily
to forage-finishing in Population A and grain-finishing
in Population B. Specifically, the present study suggests
that a forage-based diet may be associated with overall
greater gut microbial diversity in bison (Fig. 1). This
finding is consistent with those of other studies, which
have shown that fiber-based diets promote higher levels
of microbial diversity than finishing diets, because the
fermentation of fiber generates more byproducts than
that of starch [63, 64].In many gut sections, Bacteroi-
detes were more abundant with a forage diet, while Fir-
micutes were more abundant with a grain diet. This
mirrors what has been found in studies on obesity in
humans and mice, where a more natural, less calorific
diet that is rich in protein and fiber seems to favor Bac-
teroidetes, while an artificial, energy-rich diet of starch
and fats seems to favor Firmicutes [22, 65, 66]; [67, 68].
Thus, the gut microbiota of grain-fed bison appears to
resemble those of other animals fed a diet high in
starchy, processed foods. At the phylum level, Proteobac-
teria were more abundant with a grain diet only in the
omasum. Moreover, at the class level, a higher relative
abundance of Gammaproteobacteria was associated with
the grain diet throughout much of the digestive tract.

Conclusions

Within a given population, microbial community compos-
ition differed among sections of the digestive tract, but
was similar for sections within the same region, especially
the foregut and hindgut. The sections of the small intes-
tine or midgut were overall similar to one another, but ex-
hibited some similarities to the other regions as well.
Shannon diversity was lowest in the small intestine, likely
because of a generally short retention time in the small in-
testine, and the influence of low pH from the stomach,
bile from the gall bladder, and digestive enzymes from the
pancreas. This may be why Firmicutes, with their thick cell
wall, dominate in the small intestine. The present study
also found microbial community compositional differ-
ences for a given gut section from two bison populations,
possibly due to differences in diet (forage- vs. grain-fed).
However, microbial community composition was more di-
vergent among regions of the gut than between dietary
groups, indicating that physiological conditions along the
digestive tract play a larger role in structing microbial
communities than does diet.
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It is noteworthy that certain bacterial groups exhibited
differences in relative abundance between the rectum
and elsewhere in the GI tract. Thus, although fecal sam-
pling is convenient and noninvasive, one must be cau-
tious when extrapolating abundances of bacteria in fecal
samples to elsewhere in the alimentary canal [44]. Given
previous research on grain-fed cattle and bison, as well
as on obese mice and humans, it is likely that the higher
levels of Firmicutes and Gammaproteobacteria found in
the grain-finished bison represented dysbiosis [69, 70];
[71]. However, the bison in this study were not assessed
for ruminal acidosis, anorexia, or the shedding of entero-
hemorrhagic bacteria to their environment. Additional
research is needed to evaluate the clinical relevance of
symbiotic communities brought about by artificial feed-
ing methods in bison.
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