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Abstract

identical to the parental cell lines.

Background: Canine hemangiosarcoma (HSA) is a malignant tumor with poor long-term prognosis due to
development of metastasis despite aggressive treatment. The phosphatidyl-inositol-3 kinase/Akt/mammalian target
of rapamycin (PI3K/Akt/mTOR) pathway is involved in its endothelial pathologies; however, it remains unknown
how this pathway plays a role in canine HSA. Here, we characterized new canine HSA cell lines derived from nude
mice-xenografted canine HSAs and investigated the deregulation of the signaling pathways in these cell lines.

Results: Seven canine HSA cell lines were established from 3 xenograft canine HSAs and showed characteristics of
endothelial cells (ECs), that is, uptake of acetylated low-density lipoprotein and expression of canine-specific CD31
mMRNA. They showed varied morphologies and mRNA expression levels for VEGF-A, bFGF, HGF, IGF-I, EGF, PDGF-B,
and their receptors. Cell proliferation was stimulated by these growth factors and fetal bovine serum (FBS) in 1 cell
line and by FBS alone in 3 cell lines. However, cell proliferation was not stimulated by growth factors and FBS in
the remaining 3 cell lines. Phosphorylated p44/42 Erk1/2 was increased by FBS stimulation in 4 cell lines. In contrast,
phosphorylation of Akt at Ser*”?, mTOR complex 1 (mTORC1) at Ser**®, and eukaryotic translation initiation factor
4E-binding protein 1 (4E-BP1) at Ser® was high in serum-starved condition and not altered by FBS stimulation in 6
cell lines, despite increased phosphorylation of these residues in normal canine ECs. This suggested that the
mTORC2/Akt/4E-BP1 pathway was constitutively activated in these 6 canine HSA cell lines. After cell inoculation into
nude mice, canine HSA tumors were formed from 4 cell lines and showed Akt and 4E-BP1 phosphorylation

Conclusions: Our findings suggest that the present cell lines may be useful tools for investigating the role of the
mTORC2/Akt/4E-BP1 pathway in canine HSA formation both in vivo and in vitro.
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Background

Hemangiosarcoma (HSA) is a malignant tumor derived
from endothelial cells (ECs). Canine HSAs easily
metastasize to other organs, and the mean survival time is
less than 6 months even with surgical and chemothera-
peutic interventions [1]. Human angiosarcomas are also
aggressive tumors that show a propensity for distant
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metastasis [2]. Angiosarcomas occur rarely in humans,
and no effective treatments have yet been developed. Be-
cause HSAs occur more commonly in dogs than in
humans [1], it may be easier to study the progression of
these tumors in dogs and to establish effective treatments
that may also be applicable for human angiosarcomas.
Vascular endothelial growth factor (VEGF) and basic
fibroblast growth factor (bFGF), along with their recep-
tors, are overexpressed in human angiosarcomas and ca-
nine HSAs [2,3]. These growth factors usually activate
receptor tyrosine kinases (RTKs), which in turn activate
downstream signaling pathways. Among these signaling
pathways, MAPK/Erk and phosphatidyl-inositol-3 kinase
/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)
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are the major oncogenic signaling pathways [4,5]. The
MAPK/Erk pathway has been reported to be highly upre-
gulated in benign endothelial tumors rather than in malig-
nant tumors [6,7]. In contrast, the PI3K/Akt pathway is
known to be one of the important pathways in the mani-
festation of endothelial pathologies. For example, activated
or mutated PI3K/Akt causes the development of HSA in
chickens [8]. Mutation of PTEN, a PI3K antagonist, has
been reported in canine HSAs [9] and human angiosarco-
mas [10]. Moreover, the Akt/mTOR pathway is upregu-
lated in sporadic angiosarcomas in humans [11]. However,
the role of the PI3K/Akt/mTOR pathway has not been
investigated in canine HSAs.

mTOR, a serine/threonine kinase, is highly conserved
among animal species and regulates cell growth and cell
cycle progression by controlling cap-dependent transla-
tion [12,13]. mTOR exists as 2 distinct multi-protein
complexes, mTOR complex 1 (mTORC1) and mTORC2.
mTORCI, consisting of mTOR, raptor, and mLST8 (also
known as GPL), is located downstream of PI3K/Akt and
is activated by Akt via phophorylation at Ser**** [14].
mTORCI1 in turn phosphorylates the eukaryotic translation
initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and
S6 kinase (S6K) [13]. In its hypophosphorylated state,
4E-BP1 binds to and inhibits the activity of elF4E, and
4E-BP1 phosphorylation induces the release of 4E-BP1
from eIF4E, which leads to subsequent mRNA transla-
tion [15]. eIF4E is known to selectively stimulate several
malignancy-related transcripts, including cyclin DI,
bFGEF, and VEGF [16], which are involved in growth,
survival, and angiogenesis and are known to be overex-
pressed in human angiosarcomas [2,17] and canine
HSAs [3,18]. mTORC?2, consisting of mTOR, rictor, and
mLSTS, is located upstream of Akt and phosphorylates
Akt at Ser*” [19]. Although RTK signaling is known to
activate mTORC2 through the PI3SK/PTEN pathway,
less is known about mTORC?2 signaling compared with
that for mTORCI1 [12,20].

Because of the limited availability of human angiosar-
coma [21,22] or canine HSA [23,24] cell lines, it was diffi-
cult to study deregulated signaling pathways in these
tumors. We recently established xenograft canine HSA
tumors from nude mice [25] and, in the present study, we
present 7 canine HSA cell lines derived from the xenograft
tumors. By using these established cell lines, we character-
ized the biological behavior of the cells in response to
growth factors and disruption of signaling pathways. The
primary aim of these studies is the identification of novel
molecular targets for the treatment of canine HSAs.

Methods

Cell culture

To establish canine HSA cell lines, we used 3 xenograft
canine HSA tumors, which were established from 3
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spontaneous canine HSAs as described previously [25].
Briefly, the xenograft tumor Ju was established from
HSA tissue in the liver of a 10-year-old Labrador Re-
triever, Re was established from HSA tissue in the right
atrium of a 10-year-old Golden Retriever, and Ud was
established from HSA tissue in the spleen of an 11-year-
old Papillion. These tumor tissues were subcutaneously
transplanted into the right and left dorsal area of the
trunk of 3-week-old male KSN/Slc nude mice (Japan
SLC, Inc., Hamamatsu, Japan), and xenograft models
were established after >5 passages. The xenografted
tumor tissues were minced and sequentially digested in
0.1% collagenase Type I (Gibco, CA, USA) at 37°C for
15 min, and then 0.25% trypsin-EDTA (Gibco) at 37°C
for 15 min. The cell suspension was subsequently fil-
tered through a 70-pm cell strainer (BD Biosciences, NJ,
USA), and then resuspended in Medium 199 (Gibco)
supplemented with 10% fetal bovine serum (FBS, Aus-
GeneX, Oxenford, Australia). The cells were cultured in
a humidified incubator at 37°C with 5% CO,. Subconflu-
ent cells were passaged after detachment with 0.25%
trypsin-EDTA, and cell lines were established after >60
passages. For cloning, one cell per well was plated in
separate 96-well plates (Thermo Scientific, MA, USA).

For measuring the growth curve and population dou-
blings, the established cell lines were plated in 24-well
plates (Thermo Scientific) at 5000 cells/well in 1 mL of
Medium 199 containing 10% FBS. The cells were trypsi-
nized and counted with a hemocytometer using trypan
blue every 24 h. Triplicate wells were used for counting
each cell line.

To examine the uptake of the acetylated low density
lipoprotein (Ac-LDL) in HSA cell lines, subconfluent
cells were incubated with 10 pg/mL Dil-Ac-LDL (Bio-
medical Technologies Inc., MA, USA) at 37°C for 4 h in
Medium 199 according to the manufacturer’s instruc-
tions. After washing, the cells were observed with an
inverted fluorescent microscope (Biozero BZ-8000,
KEYENCE, Osaka, Japan) with a rhodamine filter. Human
umbilical vein endothelial cells (HUVECs, Cell Applica-
tions Inc., CA, USA) were purchased and used as a posi-
tive control.

ELISA

For measuring growth factors in cell supernatant, HSA
cell lines were cultured under standard conditions in
Medium 199 containing 10% EBS. After incubation for
72 h, the plates were washed with Hanks’ Balanced Salt
Solution (HBSS, Sigma-Aldrich, MO, USA), and the
medium was changed to Medium 199 containing 1%
FBS. After further incubation for 24 h, the supernatant
was stored at —80°C. The cells were trypsinized and
counted with a hemocytometer using trypan blue.
VEGF-A and bFGF concentrations in cell supernatant
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were determined using commercial ELISA kits for
humans (Quantikine, R&D Systems, MN, USA) accord-
ing to the manufacturer’s instructions since these Kkits
were previously shown to have cross-reactivity with ca-
nine growth factors [26,27].

Immunocytochemistry

Canine HSA cell lines were cultured to subconfluence
under standard conditions in Medium 199 containing
10% FBS and were used for protein expression for
VEGF-A and bFGEF. After washing with phosphate-
buffered saline without Ca** or Mg** [PBS (-)], the cells
were incubated with Protein Block Serum-Free (Dako,
Kyoto, Japan) for 30 min at room temperature (RT). The
cells were incubated overnight at 4°C with primary anti-
bodies for VEGF-A (mouse monoclonal antibody clone
C-1, 1:50; Santa Cruz Biotechnology Inc., Santa Cruz,
CA, USA) and bFGF (rabbit polyclonal antibody, 1:200;
Santa Cruz Biotechnology Inc.). The specific protein sig-
nals were visualized using the 3,3’-diaminobenzidinete-
trahydrochloride (Liquid DAB + Substrate Chromogen
System, Dako). The cells were counter-stained with
Mayer’s hematoxylin.

Reverse transcriptase-polymerase chain reaction (RT-PCR)
Expression of mRNA for growth factors and their recep-
tors was examined in the established cell lines. Total
RNA was extracted from subconfluent cells grown in
Medium 199 containing 10% FBS using TRIzol reagent
(Gibco). Reverse transcriptase-polymerase chain reaction
was performed as previously described [25] using the
OneStep RT-PCR kit (Qiagen, Hilden, Germany). RT-PCR
was carried out in a Thermal Cycler Dice Gradient
(Takara, Ohtsu, Japan). Amplifications were performed
under the following conditions: reverse-transcription reac-
tion for 30 min at 50°C, an initial polymerase activation
step for 15 min at 95°C, denaturation for 30 s at 95°C,
annealing for 30 s, and extension for 1 min at 72°C. To
confirm the absence of genomic DNA contamination,
RT-PCR was carried out for DNase I-treated total RNA
with One Step Enzyme Mix that had been deactivated
for reverse transcription activity by heating for 15 min
at 95°C. The primer sequences, annealing temperatures,
annealing cycle number, and product sizes used are listed
in Table 1. The primers were generated from canine-
specific sequences as previously described [25].

Cell proliferation assays

Cell proliferation assays were performed as previously
described [24]. Briefly, the established cell lines were pla-
ted at 1x 10% cells per well in 200 pL. Medium 199 con-
taining 10% FBS in 96-well plates for 24 h. The cells were
washed with HBSS, and the medium was replaced with
Medium 199 containing 1% FBS. After 24 h of serum
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starvation, the cells were mixed with 0, 1, 10, 50, or
100 ng/mL of growth factor in Medium 199 containing
1% FBS or were changed to Medium 199 containing 10%
FBS. Growth factors included recombinant human VEGE,
bFGEF, IGF-I, HGE, EGF, or PDGF-BB (R&D Systems),
and all of these have been reported to induce cell growth
in canine HSA cell lines except VEGF and PDGF-BB
[24]. Recombinant canine VEGF and HGF (R&D Sys-
tems) were also used. After 72-h incubation with growth
factor or FBS, the relative viable cell number was
assessed with the WST-1 assay (Roche Diagnostics,
Mannheim, Germany) according to the manufacturer’s
instructions. Each experiment was repeated three times.
Canine aortic endothelial cells (CnAOECs, Cell Applica-
tions Inc.) were purchased and used to examine the cell
growth of normal canine ECs.

Western blotting

Canine HSA cell lines were cultured to 70-80% conflu-
ence under standard conditions in Medium 199 contain-
ing 10% EBS. Cells were then washed with HBSS and the
medium was replaced with Medium 199 containing 1%
EBS. After serum starvation for 24 h, the medium was
replaced with Medium 199 containing 1% FBS or
Medium 199 containing 10% FBS for 30 min. For PTEN
expression, subconfluent cells grown in Medium 199
containing 10% FBS were used. After washing with PBS
(-), the cells were lysed with RIPA Lysis Buffer (Santa
Cruz Biotechnology Inc.) with Phosphatase Inhibitor
Cocktail 2 and 3 (Sigma-Aldrich). The concentrations of
whole cell lysates were determined by modified Lowry
method using the DC protein assay kit (Bio Rad, CA,
USA). Equal amounts of protein (10 pg) were subjected
to sodium dodecyl sulphate-polyacrylamide gel electro-
phoresis (SDS-PAGE) under reducing conditions on 10%
polyacrylamide gels. After separation by SDS-PAGE, the
proteins were transferred onto a PVFD-membrane
(Millipore, MA, USA). Membranes were blocked with
2% ECL Blocking Agent (GE Healthcare Life Sciences,
Buckinghamshire, UK) in Tris-buffered saline containing
0.1% Tween 20 (TBS-T) for 1 h at RT. The membranes
were then incubated overnight at 4°C with primary anti-
bodies for phosphorylated Akt (p-Akt Ser®”?, rabbit
monoclonal antibody clone D9E, 1:1000, and Thr3%8,
rabbit polyclonal antibody, 1:500; Cell Signaling Tech-
nology, MA, USA), Akt (rabbit polyclonal antibody,
1:1000; Cell Signaling Technology), p-p44/42 Erk1/2
(Thr?*?/Tyr***, rabbit polyclonal antibody, 1:1000; Cell
Signaling Technology), p44/42 Erk1/2 (rabbit monoclo-
nal antibody clone 137F5, 1:1000; Cell Signaling Tech-
nology), p-mTOR (Ser***®, rabbit monoclonal antibody
clone D9C2, 1:1000; Cell Signaling Technology), mTOR
(rabbit monoclonal antibody clone 7C10, 1:1000; Cell
Signaling Technology), p-p70S6K (Thr**’, mouse
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Table 1 PCR primers and conditions
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Gene Primer sequence Annealing temperature (°C) product size (bp)
CD31 For: 5-GCACACAAGAGGCATGGTAAC-3' 63.0 211
Rev: 5-GAATGGAGCACCACAGGTTT-3'
VWF For: 5-GCAATGTCTCCTCTGATGAAG-3' 63.0 221
Rev: 5-GTACAAGACAACCCCCTGCT-3'
VEGF-A For: 5'-CGTGCCCACTGAGGAGTT-3' 64.0 249, 231, and 177
Rev: 5-AAATGCTTTCTCCGCTCTGA-3'
flt-1 For: 5-ACCCTAAAGAAAGGCCAAGA-3' 63.0 156
Rev: 5-CATCAGAGAAGGCAGGAGATG-3'
flk-1 For: 5-GGAGCTCCAGAATGTGTCCT-3' 66.0 187
Rev: 5-GGTGCATGAAACTTCAATGGT-3'
bFGF For: 5-CACTTCAAGGACCCCAAGAG-3' 61.0 234
Rev: 5-GAAGCACTCGTCAGTAACACAT-3'
FGFR-1 For: 5'-GAAGTCGGATGCTACAGAGAAA-3' 65.0 162
Rev: 5-CGTAAGTTGCCTTTGGAAGC-3'
HGF For: 5'-ATGGGGAATGAGAAATGCAG-3' 60.0 210
Rev: 5-AAAAATGCCAGGACGATTTG-3'
c-Met For: 5-GATCTGGGCAGTGAATTAGT-3' 580 417
Rev: 5-GTCCAACAAAGTCCCATGAT-3'
IGF-I For: 5'-AAGCAGCACTCATCCACGAT-3' 64.0 281
Rev: 5-CAGCAGTCTTCCAACCCAAT-3'
IGF-IR For: 5-ACAACTACGCCCTGGTCATC-3' 64.0 295
Rev: 5-CAGCGATTTGTAGTCCAGCA-3'
EGF For: 5-CTGTGGGATGCAGTACATGG-3' 61.0 204
Rev: 5-CTCGGTAGCCTTCTGAGCAC-3'
EGF-R For: 5'-AGGAGAGGAGAACTGCCAGA-3' 63.0 250
Rev: 5-CAGGTGGCACCAAAGCTGTA-3'
PDGFB For: 5-TTGTACGGAAGAAGCCAACC-3' 64.0 279
Rev: 5-CCTCAATCTCCTCCAGATGC-3'
PDGFR-a For: 5'-GCCCCATTTACATCATCACC-3' 64.0 213
Rev: 5-TGTCAGCTTGCTTCATGTCC-3'
PDGFR-B For: 5'-ATGCAGTGCAGACTGTGGTC-3' 590 190
Rev: 5-TCAGCACTAGGGATGTGCAG-3'
B-actin For: 5-ATTGAGCACGGCATCGTC-3' 65.5 261

Rev: 5'-GTCACCGGAGTCCATCACG-3'

monoclonal antibody clone 1A5, 1:1000; Cell Signaling
Technology), p70S6K (rabbit monoclonal antibody clone
49D7, 1:1000; Cell Signaling Technology), p-4E-BP1
(Thrgw%, rabbit monoclonal antibody clone 236B4,
Thr’°, rabbit polyclonal antibody, and Ser®, rabbit poly-
clonal antibody, all 1:1000; Cell Signaling Technology),
4E-BP1 (rabbit monoclonal antibody clone 53H11,
1:4000; Cell Signaling Technology), and PTEN (mouse
monoclonal antibody clone A2B1, 1:200; Santa Cruz Bio-
technology, Inc.). B-actin (mouse monoclonal antibody
clone AC-15, 1:3000; Sigma-Aldrich) was used as a

loading control. The specific protein signals were visua-
lized with horseradish peroxidase-conjugated secondary
antibodies using the ECL Plus Western Blotting Detec-
tion System (GE Healthcare). CnAOECs were used to
examine the protein expression for normal canine ECs.

Inoculation of cells and immunohistochemical staining

The established cell lines were harvested during logarith-
mic growth and prepared for injection in mice. Before
injection, cells were trypsinized, counted, and washed
twice with sterile PBS (-). A total of 1x 10° cells were
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suspended in 0.2 ml of PBS (-) and injected subcutane-
ously into the right and left dorsal area of the trunk of
3-week-old male KSN/Slc mice. Five mice were used for
each cell line. The mice were observed for tumor devel-
opment twice a week, and the size of the resulting tumor
was measured. After 9 weeks, or when the tumors grew
to 10 mm in diameter, the mice were humanely sacri-
ficed, and the tumors were immediately removed. If a
detectable tumor was not formed in the mice within
30 days, the mice were sacrificed at this time. The
removed tumors were fixed in 10% neutral buffered for-
malin, embedded in paraffin, sectioned, and stained with
hematoxylin and eosin (HE) or used for immunohisto-
chemical staining. Immunohistochemical staining was
performed for CD31 (prediluted mouse monoclonal
antibody clone JC70A; Dako), von Willebrand factor
(VWE, prediluted rabbit polyclonal antibody; Dako), Ki-67
antigen (mouse monoclonal antibody clone MIB-1, 1:25;
Dako), p-Akt (Ser*”?, rabbit polyclonal antibody, rabbit
monoclonal antibody clone DE, 1:50, Thr*®, rabbit poly-
clonal antibody, 1:50; Cell Signaling Technology), and p-
4E-BP1 (Thr®”/*, rabbit monoclonal antibody clone
236B4, 1:1600; Cell Signaling Technology) on all tumors
formed from the cell injections. The experiments were
performed according to the guidelines for the care and
use of laboratory animals and approved by the Committee
for Animal Research and Welfare of Gifu University (No.
08015).

Statistical analysis

Student’s ¢ test was used to determine statistical signifi-
cance of the differences between the control and experi-
mental data for the cell proliferation assay. Differences
were considered statistically significant at p value of <0.05.

Results

Morphology and growth of canine HSA cell lines

After 60 passages, 3 cell lines were established from the
3 xenograft tumors (Ju, Re, and Ud). After cloning, 7
sub-lines with differential morphologies were established
from these 3 initial cell lines (Figure 1A). Three of the
sub-lines, KDM/JuA1, KDM/JuB2, and KDM/JuB4, were
established from a xenograft tumor of Ju, and the cells
had spindle to polygonal cytoplasm with round to oval
nuclei. Two sub-lines were established from a xenograft
tumor of Re; KDM/Rel2 cells had uniform stellate cyto-
plasm with oval nuclei, and KDM/Re21 cells had spindle
cytoplasm with oval nuclei. Two sub-lines were estab-
lished from a xenograft tumor of Ud; KDM/Ud2 cells
had large polygonal cytoplasm with round nuclei, and
KDM/Ud6 cells had spindle to polygonal cytoplasm with
oval nuclei. All sub-lines took up Dil-Ac-LDL, which is
used for identification of both normal and neoplastic
ECs [21,22,28] (Figure 1A).
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Each sub-line showed variable anchorage-dependent
growth as shown in Figure 2. KDM/Ud2 showed the most
rapid growth with a doubling time of 23.5 h, and KDM/JuB2
showed the slowest growth with doubling time of 31.6 h.

Expression of growth factor and growth factor receptor
The expression levels of mRNA for growth factors and
their receptors were different among the cell lines as
measured by RT-PCR (Figure 3). mRNAs for CD31,
VEGF-A, HGF, PDGEF-B, Flt-1, Flk-1, FGFR-1, c-Met and
IGF-IR were detected in all cell lines, mRNA for bFGF
was detected in only 2 cell lines, and no mRNA for von
Willebrand factor (vWF), EGF, or PDGFR-[3 was detected
in any cell line. Since the primer sets were generated from
canine-specific sequences as previously described [25], the
present results suggested that all cell lines have character-
istics of canine ECs.

One cell line (KDM/Rel2) had a VEGF-A concentra-
tion of 201 pg/10° cells for 24 h in the cell supernatantas
measured by ELISA, but bFGF was not found in the
supernatant of any cell line. Immunocytochemical investi-
gations for VEGF-A and bFGF revealed weak to moderate
expression of these proteins observed in the cytoplasm of
the cell lines (Figure 1B), in which the mRNA expression
was found in RT-PCR.

Effects of growth factors on cell proliferation

After 24 h of serum starvation, canine HSA cell lines
showed differential response to growth factors, including
recombinant human VEGEF, bFGF, IGF-I, HGF, EGF, and
PDGEF-BB, recombinant canine VEGF and HGF, and to
FBS as assessed by the WST-1 assay. All the cell lines
could proliferate even in serum-starved condition. In
KDM/JuB4, which expressed mRNA for all receptors ex-
cept PDGFR-f, cell proliferation was stimulated by all
growth factors except IGF-I and PDGF-BB in a dose-
dependent manner, and by FBS. In KDM/JuA1l, KDM/
Rel2, and KDM/Re21, cell proliferation was stimulated
only by FBS and not by any growth factors even though
these cell lines expressed mRNA for their receptors. Cell
proliferation of KDM/JuB2, KDM/Ud2 and KDM/Ud6
was not stimulated by any of the growth factors or by
FBS. Similar results were obtained from triplicate experi-
ments. In CnAOECSs, cell proliferation was stimulated by
all growth factors except PDGF-BB and by FBS (data not
shown). Figure 4 shows the typical results of cell prolif-
eration after incubation with growth factors.

Effects of serum stimulation on the MAPK/Erk and AKT/
mTOR pathways

Because cell proliferation was stimulated by FBS in 4 cell
lines, we further investigated the effect of FBS on the
MAPK/Erk and Akt/mTOR pathways, which are major sig-
nal transduction pathways associated with cell proliferation



Murai et al. BVMIC Veterinary Research 2012, 8:128

Page 6 of 14
http://www.biomedcentral.com/1746-6148/8/128

A1

VEGF M 110" bFeFin " &

Figure 1 Morphology, Dil-Ac-LDL uptake, and immunocytochemical staining for VEGF-A and bFGF of canine HSA cell lines. (A)
Morphological appearance and uptake of Dil-Ac-LDL (right bottom) of established canine HSA cell lines. Canine HSA cell lines were grown in
Medium 199 with 10% FBS. Each cell line exhibited a different morphology. Bars =50 um. Right bottom; Uptake of Dil-Ac-LDL in KDM/JuAT.

Bar=25 um. (B) Immunocytochemical staining for VEGF-A and bFGF. The cytoplasm of cells showing positive staining with VEGF-A in KDM/JuA1
and bFGF in KDM/Re12. Bars=50 pm.

[4]. Western blot analysis revealed that p-p44/42 Erk1/2  similar increase in p-p44/42 Erk1/2 Thr***/Tyr*** was
Thr**?/Tyr*** levels were low in serum-starved condition  observed in CnAOECs (Figure 5A). Phosphorylation levels
and increased in the presence of serum in the KDM/JuAl, of Akt at Ser*”® in any cell line except KDM/Rel2 were
KDM/JuB2, KDM/JuB4, and KDM/Rel2 cell lines and a  high in serum-starved condition, and FBS stimulation had
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Figure 2 Cell growth under standard conditions. Growth curves of canine HSA cell lines. Each cell line was plated at 5000 cells/well in 1 mL
of Medium 199 containing 10% FBS. The cells were trypsinized and counted with a hemocytometer using trypan blue every 24 h.
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Figure 3 mRNA expression of canine HSA cell lines. RT-PCR analysis of the expression of endothelial cell-specific markers (CD31 and vWF),
growth factors (VEGF-A, bFGF, HGF, IGF-I, EGF, and PDGF-B), and their receptors (Flt-1, Flk-1, FGFR-1, c-Met, IGF-IR, EGFR, PDGFR-q, and PEGFR-B3).
Total RNA was extracted from subconfluent cells grown in Medium 199 with 10% FBS using TRIzol reagent. 3-actin was used as a loading control.
mMRNA extracted from canine spleen was used as PC, and water was used instead of mRNA as NC. Abbreviations: PC, positive control. NC,

negative control.

no effect on its levels. Similarly, phosphorylation levels of
mTORCI at Ser***® and 4E-BP1 at all residues were high in
unstimulated cells and unchanged by serum stimulation in
any of the cell lines. In CnAOECs, phosphorylation levels
of these proteins were low in serum-starved condition, and
FBS stimulation increased phosphorylation of Akt at Ser*”?,
mTORC1 at Ser’**8, and 4E-BP1 at Ser®® but not at

Thr¥”/*® or Thr”®. These data suggest that the

phosphorylation of Akt at Ser’”?, mTORC1 at Ser*8, and
4E-BP1 at Ser® was constitutively activated in the absence
of FBS in six cell lines. The levels of p-Akt at Thr**® and p-
p70S6K at Thr*®® were increased by serum stimulation in
KDM/Rel2 cells in a manner similar to those of normal ca-
nine ECs. Conversely, FBS stimulation decreased phosphor-
ylation of these residues in KDM/Ud2 and KDM/Ud6 cells.
In addition, phosphorylation of these two sites was not
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Figure 4 Cell proliferation in the presence of growth factors. Typical results of cell proliferation assays after incubation with recombinant
human VEGF. Each cell line was plated at 1x 10° cells per well in 200 L Medium 199 containing 10% FBS in 96-well plates for 24 h. After
24 h-serum starvation, 0, 1, 10, 50, or 100 ng/ml of recombinant growth factor in Medium 199 containing 1% FBS was added to the cells, or the
medium was changed to Medium 199 containing 10% FBS for 72 h. The relative viable cell number was assessed by the WST-1 assay. *; p < 0.05
compared with cells that were not exposed to growth factor.
J

affected by serum in the KDM/JuB4 cells and was not
detected in KDM/JuA1l cells. The present findings suggest
that the phosphorylation of p70S6K at position Thr*** may
be related to that of Akt at Thr*®,

Deletion or mutation of PTEN is reported in some
types of tumors, including vascular tumors [9,10,29],
which causes constitutive activation of the PI3K/Akt
pathway. PTEN protein was detected in all cell lines.
The expression levels of PTEN in the KDM/JuAl and
KDM/JuB4 cells were lower than those in other cell lines

and were not related to the phosphorylation levels of
Akt (Figure 5B).

Tumor formation in nude mice

After subcutaneous injections of cells from the various
cell lines into KSN/Slc mice, tumor masses were formed
in all the nude mice that had been injected with KDM/
JuAl or KDM/Re2l cells, and in 2 and 1 nude mice
that had been injected with KDM/JuB2 and KDM/JuB4
cells, respectively (Table 2). No tumor masses were



Murai et al. BVMIC Veterinary Research 2012, 8:128 Page 9 of 14

http://www.biomedcentral.com/1746-6148/8/128

A Cellline JuA1 JuB2 JuB4 Re12 Re21 Ud2 Udeé CnAOEC
Serum(%) 10 1 101 101 101 101 101 10 1 10 1
p-Erk1/2 Thi02 Tyr204 | o - I‘# “ |ﬁ F# -

Erk1/2

H

dHHH-I-
——H—“{F—H“ | ||'-|l |

eactee| | |[EHE | ]

o e e el

p-mTOR Ser2#48

p-Akt Ser*™?

| I

=
’:l

MTOR | wee| | v ‘--l "“'| |"| ""-| |-—|
p-p7OSBK Thri® | "‘ | |""'| |- “H -| | | | | I_I

prosex» (S [ S B T - B > (58

| |

oo - @] (] ] [ ] [ [
| === e e

[
cor 8 [0 0 e ] (00
——— - -

N
N \&WQ’ Qi"q'o Sp

B PTEN|-—-...-_.. -|

[0 ————

Figure 5 Effects of serum stimulation on the MAPK/Erk and AKT/mTOR pathways. (A) Western blot analysis for the expression of Erk, Akt,
mTOR, p70S6K, and 4E-BP1. Canine HSA cell lines were grown in Medium 199 with 10% FBS. After 24 h-serum starvation, the medium was
replaced with Medium 199 containing 1% FBS or Medium 199 containing 10% FBS for 30 min. The total protein was then extracted using RIPA
Lysis Buffer, and equal amounts of protein (10 pg) were subjected to western blot analysis. -actin was used as a loading control. (B) Western
blot analysis for the expression of PTEN. The total protein was extracted from subconfluent cells grown in Medium 199 with 10% FBS using RIPA
Lysis Buffer, and equal amounts of protein (10 ug) were subjected to western blot analysis. 3-actin was used as a loading control.

B-actin

formed with injection of KDM/Rel2, KDM/Ud2, or
KDM/Ud6 cells. No metastasis was observed after injec-
tion with any of the cell lines during experimental periods
and, histologically, all the tumor masses that developed
showed vascular tissue-like structures (Figure 6A—D). The

Table 2 Tumor growth after subcutaneous injection of
1 x 10%cells of each canine HSA cell line

Growth Growth Mean volume (mm?3)
(No. of animals) (No. of tumors)
JUAT 5 8 102.0
JuB2 2 3 88.6
JuB4 1 2 8.75
Re21 5 9 588

Tumor volume is calculated: (width)? x length/2 mm?.

tumor tissues formed by KDM/Re21 injection showed in-
complete larger vascular-like structures (Figure 6D) than
those formed form other cell lines. Because the formed
tumors contained many types of cells, such as inflamma-
tory cells, in which similar signaling pathways may be acti-
vated as those in tumor cells, it was difficult to evaluate
the protein expression of tumor cells alone by western
blot analysis. Therefore, we performed immunohisto-
chemistry to examine the localization of protein expres-
sion. All tumors showed positive reactivity for CD31
(Figure 6E) and vWF (Figure 6F), and positive reactivity
for Ki-67 antigen of MIB-1 clone (Figure 6G) was
observed in the nuclei of the tumor cells, but no positive
reactions were observed in the surrounding murine tissues
such as the epidermal basal cells. Because murine tissues
do not react with the antibody against Ki-67 antigen of
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Figure 6 Histology and immunohistochemical staining for EC markers and Akt/4E-BP1 in tumors formed from cell injections. Tumors
formed after injection of 1x10° cells in the right and left dorsal area of the trunk of 3-week-old male KSN/SIc mice. (A-D) Histological features of
formed tumors (A: JuAT, B: JuB2, C: JuB4, D: Re21). Hematoxylin and eosin staining; bars =50 um. The neoplastic cells had spindle to
polygonal-shaped cytoplasm with oval nuclei, forming some areas of vascular clefts of channels. (E-S) Immunohistochemical results of CD31, vVWF,
Ki-67, p-Akt Ser®’”?, p-Akt Thr*®, and p-4E-BP1 Thr*”/“® in the formed tumors. (E) The membrane of the tumor cells show positive staining with
CD31 (JuAl). (F) The cytoplasm of the tumor cells show positive staining with VWF (Re21). (G) The positive staining of Ki-67 MIB-1 clone in the
nuclei of tumor cells indicates that the tumor is not derived from the mice (JuB2). (H-K) All HSA tumors that developed showed moderate

(I: JuB2, J: JuB4, and K: Re21) to strong (H: JuA1) expression for p-Akt Ser*”? in the cytoplasm and nuclei. (L-O) HSA tumors that developed
showed moderate (N: JuB4) to weak expression (L: JuA1 and M: JuB2), and one cell line (O: Re21) showed no expression of p-Akt Thr*%, (P-S) All
HSA tumors showed strong cytoplasmic and nuclear expression of p-4E-BP1 Thr”4¢ (P: JuA1, Q: JuB2, R: JuB4, and S: Re21). Immunohistochemical
staining; bars=50 um (G) and 25 um (E, F, H-S).

All tumors that formed were examined further for ex-

pression of the Akt/4E-BP1 pathway. Moderate to in-

tense degrees of phosphorylation of Akt at Ser*’’was

MIB-1 clone [30], the positive reactivity for both Ki-67
antigen of MIB-1 clone and EC markers in the tumor
cells provided evidence that the tumor masses that

formed in the nude mice were not derived from the ori-
ginal tissues in the mice and were HSAs induced by cell
injections.

observed in both the nuclei and cytoplasm in all tumors
(Figure 6H-K). On the other hand, weak to moderate
phosphorylation of Akt at Thr**® was observed in both
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the nuclei and cytoplasm (Figure 6L—N), and this phos-
phorylation was not detected in tumors formed from
Re21 injections (Figure 60). 4E-BP1 at Thr*”/*®was highly
phosphorylated in both the nuclei and cytoplasm in all
tumors (Figure 6P-S).

Discussion

We established 7 canine HSA cell lines from nude mice-
xenograft canine HSAs [25]. Although all original canine
HSA xenograft tumors expressed mRNA for bFGF [25],
some sub-lines derived from the same xenograft tumor
lacked expression of bFGF. The differences in expression
between xenograft tumors and subsequently derived
sub-lines suggested that each xenograft tumor might
contain a variety of tumor cells with different pheno-
types. Each cell line had characteristics of ECs, which
was confirmed by expression of CD31 mRNA and in-
corporation of Dil-Ac-LDL. However, vVWF mRNA was
not detected in any of the cell lines. The loss of vWF
has also been reported in human angiosarcomas and ca-
nine HSA cell lines [22,23] and occurs in undifferenti-
ated malignant ECs [31]. Therefore, the expression of
vWE is of limited value for identifying malignant ECs
[22], and CD31 is the most reliable EC marker [32,33].
Unlike the expression levels in the cultured cell lines, ex-
pression of vWF and CD31 was observed in the tumors
that formed after cell injections. vWF is produced by
ECs and megakaryocytes, and adhere to collagen in the
subendothelium [34]. Tumors that formed after cell in-
jection contained not only tumor cells but diverse cells,
including red blood cells, inflammatory cells, and stro-
mal cells. These cellular constituents may account for
the differences in vWF expression observed between cul-
tured cell lines and the resulting tumors after injection
with these cells, but the exact cause of the differences
remains unclear.

The established canine HSA cell lines expressed differ-
ing levels of mRNA for a variety of growth factors and
their receptors. Although receptors were expressed in
most of the cell lines, cell proliferation was stimulated
only by the associated growth factors in the case of
KDM/JuB4, in which proliferation was also stimulated
by serum. Stimulated proliferation of 3 cell lines was
observed in the presence of serum alone. A previous
study with a canine HSA cell line showed that prolifera-
tion was stimulated by serum and the same growth fac-
tors that we used except for human VEGF and PDGF-BB
[24]. The previous study had a limitation, in that it ana-
lyzed only a single cell line. Because the present cell lines
expressed both growth factors and their receptors, the
lack of response to the growth factors may be the result
of saturation of the receptors by growth factors in an
autocrine or paracrine manner. Our findings suggest that
serum may be a potent stimulator of cell proliferation in
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diverse types of canine HSA cells. In the serum, interleu-
kins (ILs) such as IL-la and IL-8 may be the primary
stimulator since they are known to stimulate cell growth
in canine HSAs as well as in normal ECs [35,36]. How-
ever, a limitation of this study is that we could not evaluate
the protein expression of receptors. Another possibility is
that the lack of protein expression of the receptors may
lead to unstimulated proliferation regardless of the mRNA
expression.

In the present study, VEGF was detected in culture
supernatant only in one cell line, even though mRNA
and protein for VEGF was detected in all cell lines, and
bFGF was not detected in the supernatant of any cell
lines, including two cell lines that expressed mRNA and
protein for bFGF. VEGF is known to regulate normal
angiogenesis [37,38] and is overexpressed in vascular
tumors of both humans and dogs [2,3]. In the previously
reported canine HSA cell lines, VEGF [23,24] and a
small amount of bFGF [24] were detected using the
same ELISA kit as that used in the present study. How-
ever, another study found that even though VEGF was
present at high levels in the cytoplasm of activated ECs,
it could not be detected in culture supernatant due to
low levels of extracellular release [36]. Because VEGF
and bFGF mRNA and protein were expressed in the
present cell lines but not in the supernatant, these
growth factors are most likely to be contained only in
the cytoplasm and were not released into the cell super-
natant. It is also unknown whether these growth factors
are released into the extracellular matrix in spontan-
eously occurring canine HSAs, in which both VEGF and
bFGF are overexpressed [3].

The phosphorylation of Akt at Ser™” was not affected
by FBS stimulation in all cell lines except KDM/Rel2. In
addition, the phosphorylation of mTORC1 at Ser®**®
and 4E-BP1 at all residues was unchanged in all cell
lines. In normal canine ECs, the phosphorylation of Akt
at Ser””?, mTORCI at Ser****, and 4E-BP1 at Ser® was
increased in the presence of FBS, but not phosphoryl-
ation of 4E-BP1 at Thr*”/*® or Thr’®. 4E-BP1 is known
to be sequentially phosphorylated on three residues:
phosphorylation of Thr*”/*® is followed by Thr’”® and
then Ser® [15]. The phosphorylation of Thr*”/*¢ is rela-
tively unaffected by serum [39], whereas phosphorylation
of Thr’® and Ser® are stimulated by serum [15]. How-
ever, a recent study indicated that different cell types as
well as different stimuli lead to different 4E-BP1 phos-
phorylation [40]. Furthermore, Ser®® of 4E-BP1 is an es-
sential site for the control of translation initiation by
release of 4E-BP1 from eIF4E [15]. Our results suggest
that phosphorylation of 4E-BP1 at Ser® was the only site
that was regulated in a serum-dependent manner in nor-
mal canine ECs, rather than Thr*”/*® and Thr’®. This
indicates that Ser® of 4E-BP1, Ser*’® of Akt, and Ser***®

473
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of mTORC1 were constitutively activated in the present
cell lines. mMTORC1 and mTORC2 are located both up-
stream and downstream of Akt, and Ser*”® of Akt is dir-
ectly phosphorylated by mTORC2 [19], whereas mTORC1
at Ser”**® is phosphorylated by Akt [14]. The present find-
ings suggest that the mTORC2/Akt/4E-BP1 pathway was
constitutively activated in a serum-independent manner,
and was considered to be deregulated in the present cell
lines compared with that in normal ECs. Consistent with
the present results, constitutive phosphorylation of both
Akt at Ser*”® and 4E-BP1 is reported in lymphomas [29]
and acute myeloid leukemia [41]. Since these constitu-
tively activated pathways are highly sensitive to molecular
targeted therapies [5], the mTORC2/Akt/4E-BP1 pathway
may be a novel target for treatment of canine HSAs. How-
ever, there is still possibility that mTORC1 and 4E-BP1 are
phosphorylated independently of mTORC2, because
mTORC1 was unaffected by serum regardless of increased
phosphorylation of Akt at Ser*”? in KDM/Rel2. Another
possibility is that phosphorylation of 4E-BP1 may not be
caused by Akt nor mTORC1 because 4E-BP1 is known to
be phosphorylated by p44/42 Erkl1/2 [42]. This is most
likely to occur in KDM/Ud2 and KDM/Ud6 because the
phosphorylation of Erk1/2 was unchanged in the presence
of FBS.

Although 4E-BP1 was constitutively activated inde-
pendent of FBS, cell proliferation was stimulated by
serum in 4 cell lines. This stimulation seemed to be
related to increased phosphorylation of p44/42 Erkl/2
Thr?*?/Tyr*®*, similar to that of normal canine ECs. The
MAPK/Erk pathway regulates cell proliferation differ-
ently from the PI3K/Akt pathway [4,5] and is not acti-
vated in human angiosarcomas [7]. In contrast, the
mTORC2/Akt/4E-BP1 pathway may regulate serum-
independent cell proliferation because HSA cells could
grow in serum-starved conditions. Another possibility is
that constitutive mTORC2/Akt/4E-BP1 activation may
lead to other effects besides cell proliferation since
mTOR also regulates the cell cycle and anti-apoptosis
[12,13]. In KDM/Ud2 and KDM/Ud6, both the MAPK/
Erk and mTORC2/Akt/4E-BP1 pathways were constitu-
tively phosphorylated, and FBS stimulation failed to
stimulate cell proliferation. RTKs are well-known activa-
tors of the MAPK/Erk and Akt/mTOR pathways, and
mutations of RTKs in cancer lead to constitutive activa-
tion of these pathways [4,5]. Therefore, the present con-
stitutive activation of these two pathways may be result
from aberrant activation of RTKs.

As opposed to phosphorylation of Akt at Ser*”?, the
phosphorylation of Akt at Thr’®® was affected by FBS
stimulation and seemed to be correlated with the phos-
phorylation of p70S6K. Akt is usually phosphorylated at
Thr?*® by 3- phosphoinositide-dependent kinase, whereas
Ser*” is phosphorylated by mTORC2 [20]. Although both
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p70S6K and 4E-BP1 are located downstream of mTORC1
[13], recent studies have indicated that these 2 proteins
are regulated by distinct signaling pathways in some types
of cells. In normal ECs, p70S6K is regulated by mTORCI,
and 4E-BP1 is regulated by Akt independently of the
mTORC1 pathway [40]. The mTORC1-independent
regulation of 4E-BP1 has been also demonstrated in
hematopoietic malignancies [29,41]. Taken together, the
phosphorylation of p70S6K and 4E-BP1 in the present
cell lines was probably regulated by 2 different signaling
pathways.

Deletion or mutation of PTEN is known to cause con-
stitutive activation of the PI3K/Akt pathway in some
types of tumors, including vascular tumors [9,10,29].
Deletion or point mutations have been reported in the
C-terminal domain of PTEN in canine HSA cell lines
[9]. The antibody used in the present study also recog-
nizes the C-terminal domain of PTEN. We found no
evidence for deletion of PTEN in the present cell lines,
despite constitutive phosphorylation of Akt at Ser®”?, It
is known that constitutive activation of Akt is not always
associated with the deletion or mutation of PTEN [9,43],
and other growth factors and signaling pathways are sug-
gested to regulate the constitutive activation of this path-
way [43]. However, we were unable to test for mutations
of PTEN, and there is a possibility that a mutation in
PTEN was associated with the constitutive activation of
Akt.

After cell injections into nude mice, HSA tumors
developed from 4 cell lines. In these mice with devel-
oped tumors, no metastatic lesion was observed, similar
to that of original canine HSA xenograft models [25].
Similarly, metastatic tumor was not detected after sub-
cutaneous injection of the human angiosarcoma cell line
in nude mice despite tumorigenicity on the skin. Canine
HSAs [1] as well as human angiosarcomas [2] have high
metastatic biology that leads to poor prognosis; however,
the established cell lines did not show these characteristics.
Another study of a canine HSA cell line indicated that
intravenous injection formed metastatic lesion in the lungs
of SCID mice [35]. The differences in the results of metas-
tasis may depend on the route of cell injection or immun-
ity of mice. Another possibility is that the metastatic
property may be lost during passages of xenograft tumor
or cell culture. However, immunohistochemical analysis in
the present study revealed that the developed tumors after
cell injection had high levels of phosphorylation of Akt at
Ser*”® and 4E-BP1 at Thr*”/*® similar to that of the original
cell lines. These in vivo models would be useful tools for
evaluating the anti-tumor effect of inhibitors targeting the
mTORC2/4E-BP1  pathway. Drugs targeting both
mTORC2 and mTORC1 have been studied in acute mye-
loid leukemia and have shown marked anti-tumor effects
[44]. Because both mTORCI1 and mTORC?2 are activated
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during angiogenesis [45], mTORC1/mTORC2 inhibition
may have a potent effect in HSA tumors through inhibition
of not only tumor cell proliferation but also angiogenesis.

Conclusions

We have established 7 canine HSA cell lines from 3
xenograft canine HSAs. These cell lines showed diverse
morphologies and mRNA expression levels for VEGF-A,
bFGF, HGF, IGF-I, EGF, and PDGF-B and their recep-
tors. Cell proliferation was stimulated by these growth
factors and FBS in one cell line, was stimulated by FBS
alone in 3 cell lines, and was not stimulated by either
growth factors or FBS in the remaining 3 cell lines.
Phosphorylation of p44/42 Erk1/2 was increased in the
presence of FBS in 4 cell lines and seemed to be related
to serum-dependent proliferation. In contrast, phosphor-
ylation of Akt at Ser*”?, mTORCI at Ser***%, and 4E-BP1
at Ser® was not altered by FBS stimulation in 6 cell
lines, suggesting that the mTORC2/Akt/4EBP1 pathway
was constitutively activated in the present cell lines.
After cell injection into nude mice, canine HSA tumors
were formed in 4 cell lines. These tumors showed simi-
lar expression levels for phosphorylated Akt and 4E-BP1
as the original cell lines. Therefore, the present cell lines
are useful models to investigate the role of the
mTORC2/Akt/4E-BP1 pathway in canine HSA in both
in vitro and in vivo systems.
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