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Abstract
The aim of this study was to examine the effects of salt addition on the skin gene expression of Mucin, 
Antimicrobial peptides, cortisol, and glucose in Oreochromis niloticus after 5-hour transportation in water. Three 
groups were compared: Control, post-transport without salt (PT-S), and post-transport with 5 g salt-1(PT + S), with 
a stocking density of 28.6 gL-1, 20 fish for each experimental group. The results showed that the PT-S group had 
more significant changes in gene expression than the PT + S group, suggesting that salt alleviated the stress and 
immune responses of O. niloticus. The PT-S group had higher expression of mucin- 2(MUC + 2) (7.58 folds) and 
mucin-5AC (MUC5-AC) (6.29 folds) than the PT + S group (3.30 folds and 4.16 folds, respectively). The PT-S group 
also had lower expression of β-defensin-1 (Dβ1) (0.42 folds), β-defensin-2 (Dβ2) (0.29 folds), and Cath1 (0.16 folds) 
than the PT + S group (0.82 folds, 0.69 folds, and 0.75 folds, respectively). The skin morphology of the PT-S group 
revealed some white patches with no goblet cell openings, while the PT + S group had better preservation of skin 
features with some goblet cell openings and slight white patches. This study indicates that O. niloticus can benefit 
from sodium chloride during transportation, as it helps to reduce stress and inflammation, balance mineral levels, 
enhance health and immunity, and regulate mucous secretion.
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Introduction
Nile tilapia (Oreochromis niloticus) is a valuable eco-
nomic freshwater fish species and its performance and 
health condition can be negatively affected by stressful 
rearing conditions. One of the sources of stress for fish 
in aquaculture is the transportation of live fish, which 
involves mechanical and water quality deterioration 
stress on the fish [1]. To improve the profitability and 
sustainability of aquaculture, it is important to under-
stand how commercial fish respond to stress [2]. More-
over, there is an increasing demand for objective criteria 
to evaluate the health and welfare of the fish [3]. The fish 
skin mucus is the viscous and slippery layer that covers 
the epithelial surfaces and protects the fish from patho-
gen invasion by providing a physical or chemical bar-
rier [4]. During transportation, when fish are crowded 
in a single bag, they may lose more mucus, which com-
promises the mucus protective barrier and skin barrier 
homeostasis and may increase the susceptibility to dis-
eases in a stressed fish.

Mucin and antimicrobial peptides (AMPs) are impor-
tant components of fish skin mucus, which is a natural 
barrier that protects fish from various stressors, such 
as pathogens, parasites, predators, and environmental 
changes [5]. Fish transportation is a common practice 
in aquaculture and fisheries, but it can cause significant 
stress and damage to fish, leading to increased suscepti-
bility to infections, reduced growth, and mortality [6].

Transporting fish in water can cause them to release 
cortisol, a hormone that indicates stress levels [7–9]. Pre-
vious studies have shown that stress protein genes are 
affected by stress and can serve as biomarkers for aquatic 
environmental quality [10, 11]. Therefore, it is important 
to reduce stress during transport [12]. A common prac-
tice in freshwater fish farming is to add salt (NaCl) to the 
water, which helps to prevent osmoregulation problems 
[13]. NaCl may also influence the immunity of fish skin, 
which is the focus of this work [14, 15]. We examined the 
expression of mucins genes (MUC2 - MUC5-AC), which 
are involved in mucus production, and antimicrobial 
peptide genes (Dβ-1, Dβ-2 and Cath-1), which are part 
of the innate immune system, in the skin of Oreochromis 
niloticus transported in water with or without salt. We 
also examined the impact of cytokines, prolactin and 
growth hormones on the sampe samples, and reported 
our findings in a separate publication [16].

Materials and methods
Fish transport experiments
Fish were obtained from Alaa Hussein Tilapia breeding 
farm at Assiut Province (Egypt). Fish were 100 ± 10 gm, 
fish were sampled before (control) and after a 5 h trans-
port event. Transported groups consist of post transport 
fish in water without salt (PT-S) and post transport group 

in water with 5gm/L salt (PT + S). 5 g/L salt were chosen 
as our treatment based on our preliminary trials and the 
results of Oliveira et al. (2009) [17]. Transport water was 
directly obtained from the raft where the fish were held. 
Fish were not sedated during transport. 20 fish from each 
experimental group were sampled each time. Fish were 
anesthetized with MS-222 [18] before skin sampling. The 
fish was euthanized by spinal cord severance and skin 
dissected skin samples were preserved in RNA later and 
store at − 80 °C until analysis [19].

RNA extraction and cDNA synthesis
RNA kit (Qiagen) was used to extract total RNA from the 
tissue samples (both challenged and healthy fish) follow-
ing the manufacturer’s protocol. RNA purity and the con-
centration was determined at 260 /280 nm in nanodrop 
(Thermo Scientific). cDNA synthesis was carried out and 
examine by 1.5% agarose gel electrophoresis using the 
PrimeScript™ II 1st strand cDNA Synthesis Kit (TaKaRa, 
Japan) following the manufacturer’s protocol, using 
2.5 mg of RNA as templates. The synthesized cDNA was 
then be diluted 40 fold in nuclease-free water and stored 
at 80- Cº for further use.

Quantitative real time PCR (qPCR)
QRT-PCR was performed on the Roche Light Cycler 
480 Real-time PCR System. The amplifications was per-
formed in a total volume of 10  µl and included 5  µl of 
2X SYBR Green Master Mix reagent, 1 µl of 1:10 diluted 
cDNA and 0.2  µl of each primer (10 µM). The ther-
mal cycling profile consisted of an initial denaturation 
at 95 °C for 5 min followed by 40 cycles of denaturation 
at 95  °C for 15s, annealing at 60° for15s and extension 
at 72° for 20s. An additional temperature-ramping step 
from 95 °C to 65 °C will be used to produce the melting 
curve. The primer sets for quantification of mRNA lev-
els of selected genes is designed based on the O. niloticus 
sequences found in Table 1.

Scanning electron microscopy
Tissue samples excised from fish of the groups I, II and 
III, were rinsed in physiological saline, dipped briefly in 
a 0.1% solution of S-carboxymethyl-L-cysteine (sigma 
Aldrich) to remove mucus following Whitear and Moate 
(1994) [20] and then fixed in cold (4  °C) 3% glutaralde-
hyde (Lifeline Medical, Inc) in 0.1 M sodium cacodylate 
buffer (pH 7.4) (sigma Aldrich) for 4  h. After fixation, 
the tissue samples were dehydrated, dried using Criti-
cal Point Dryer (E3000 series; Quorum Technologies), 
attached to stubs and then coated with gold using Sputter 
Coater (SC7620; Quorum Technologies) following Verma 
et.al.(2017) [21]. Processed samples were examined under 
a JEOL 5800LV scanning electron microscope.
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Statistical analysis
Results are expressed as the mean ± standard error (SE). 
Data analysis was performed in GraphPad Prism ver-
sion 5.0 including normality tests. All data were normally 
distributed. Statistically significant differences were con-
sidered when p < 0.05. The qPCR measurements were 
analyzed by one and Two-way ANOVA test to identify 
statistically significant differences between groups. P 
value for each data analysis was recorded.

Results
Mucin genes expression
Mucin genes expression was significantly up-regulated 
in the PT-S and PT + S groups compared to the control 
group. Mucin 2 (MUC + 2) gene expression was greater 
up-regulation in the PT-S group recording 7.58 folds 
comparing to a 3.30 folds in the PT + S group. Also, the 
mucin 5AC (MUC5-AC) gene expression was a greater 
up-regulate in the PT-S group and recorded 6.29 folds 
comparing to 4.16 folds in the PT + S group Fig.  1; 
Table 2.

Antimicrobial peptides genes expression
The evaluation of different antimicrobial peptides in 
response to the stress of transportation and the mitiga-
tion effect of Nacl revealed that β-defensin-1 (Dβ-1), 
β-defensin − 2 (Dβ-2) and cathelicidin-1 (Cath-1) were 
significantly down regulated in the skin of fish of both 
post transport groups recording 0.42, 029 and 0.16 in 
PT-S group and 0.82, 0.69 and 0.75 in the PT + S group 
respectively. Overall, the down regulation of antimicro-
bial peptide genes was considerably more dramatic in the 
PT-S group than in the PT + S group Fig. 2; Table 3.

Table 1 Oligonucleotide primers used in SYBR Green real time 
PCR
Gene Primer sequence (5’-3’) Reference
EF-1α  C C T T C A A C G C T C A G G T C A T C Gröner et 

al., 2015 
[35]

 T G T G G G C A G T G T G G C A A T C

MUC-2  C A A C T G T T T T T G A G A C A A C T T C A G A Midhun 
et al., 
2019 [36]

 C T G A A G T G A C C G T G G A A G G

MUC5-AC  G C T C T G G T C T T C G G A C T A T C T G Tacchi et 
al., 2015 
[28]

 G C T G C T C T T A C A C A A C G A C G
DB-1  G G T T T T C C T A T T G C T T A A T G T T G T G G

 G A C A C A C A G T T A A G T C A T G G
DB-2  G C T G A C A G C A G T G C A A G C T G A T G A C A C

 G C A A A G C A C A G C A T C T T A A T C T G C
Cath-1  A C C A G C T C C A A G T C A A G A C T T T G A A

 T G T C C G A A T C T T C T G C T G C A A

Table 2 Mucin genes expression showed significant up regulation between groups and control according to Two-way ANOVA 
(p < 0.0001)
Fish group Sample Elongation factor-1 alpha (EF1α) MUC-2 MUC5-AC

Cycle threshold (CT) CT Fold change CT Fold change
Pre-transport
(CG)

A1 19.23 21.52 - 22.19 -
A2 19.28 21.70 22.26
A3 19.38 21.85 22.44
Mean 19.30 21.69 22.30

Post-transport in water without salt
(PT-S)

B1 18.65 18.13 7.52 19.10 5.86
B2 19.14 18.50 8.17 19.53 6.11
B3 19.88 19.35 7.57 20.14 6.68
B4 19.27 18.83 7.11 19.56 6.54
Mean 19.24 18.70 7.58 19.58 6.29

Post-transport in water with 5 g/L salt
(PT + S)

C1 19.15 19.90 3.12 20.15 4.00
C2 20.47 21.04 3.53 21.25 4.66
C3 18.29 19.12 2.95 19.24 4.14
C4 21.11 21.63 3.66 22.16 3.86
Mean 19.76 20.42 3.30 20.70 4.16

Fig. 1 Mucins genes expression in skin of O. niloticus of PT-S and PT + S 
fish groups measured by RT-qPCR. Data are expressed as the mean fold-
change compared to the control skin group. Bars represent means ± stan-
dard error. There was highly significant differences between groups 
according to Two-way ANOVA (p < 0.0001)
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Scanning electron microscopy (SEM)
Skin section of the control group fish showed the regu-
lar arranged pattern of surface squamous cells and minor 
depressions among superficial cells indicating opening of 
goblet cells (Fig. 3a & b). In a PT-S group, the skin showed 
scratched white patches that may represent thickened 
surface with absence or slightly clear goblets cell opening 
(Fig. 4a & b). On the other hand, the skin sections of the 
PT + S fish group showed moderate preservation of skin 
surface features with some goblet cells openings (Fig. 5a 
& b).

Discussion
The transport of live fish is a common and inevitable 
practice in aquaculture [22, 23]. Transportation processes 
are stressful to fish [24] and the skin also expresses genes 
that may enhance immune system including antimicro-
bial peptides, cytokines, complements, major histocom-
patibility complex (MHC) and immune-globulins. These 
genes that are located in the skin produce substances 
which are then released to the surface and integrate with 
the mucus enhancing the first line defense in fish against 
pathogens [25]. The expression of the genes and immune 
parameters that were measured in this study could be 

Table 3 Skin antimicrobial peptides genes expression showed significant down regulation between groups and control according to 
Two-way ANOVA (p < 0.0001)
Fish groups Sample Elongation factor 1

alpha (EF1α)
Defensin- β 1   (D β -1) Defensin- β 2

(D β -2)
Cathelicidin 1
(Cath 1)

Cycle threshold (CT) CT Fold change CT Fold change CT Fold change
Pre-transport
(CG)

A1 19.23 20.19 - 19.72 - 19.85 -
A2 19.28 20.22 19.93 20.06
A3 19.38 20.30 20.03 20.20
Mean 19.30 20.24 19.89 20.04

Post- transport in water without salt
(PT-S)

B1 18.65 21.00 0.38 20.91 0.31 21.84 0.18
B2 19.14 21.09 0.50 21.57 0.28 22.11 0.21
B3 19.88 22.10 0.41 22.40 0.26 23.20 0.17
B4 19.27 21.52 0.40 21.61 0.30 23.25 0.11
Mean 19.24 21.43 0.42 21.62 0.29 22.60 0.16

Post- transport in water with 5 g/L 
salt
(PT + S)

C1 19.15 20.34 0.84 20.19 0.73 20.28 0.76
C2 20.47 21.60 0.88 21.48 0.75 21.66 0.73
C3 18.29 19.57 0.79 19.48 0.66 19.31 0.82
C4 21.11 22.45 0.76 22.36 0.63 22.37 0.70
Mean 19.76 20.99 0.82 20.88 0.69 20.91 0.75

Fig. 2 Reflected highly significant differences between antimicrobial peptide gene expression of the PT-S and PT + S groups compared to the control 
skin group. Bars represent means ± standard error. There was highly significant differences between groups according to Two-way ANOVA (p < 0.0001)
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helpful in monitoring the health status and welfare of O. 
niloticus particularly in relation to transportation stress.

Mucins are high molecular weight glycoproteins impor-
tant for viscosity, trapping pathogens and physical barrier 
[26]. In this study, MUC + 2 and MUC5-AC genes expres-
sion were up regulated recording 7.58 and 6.29 folds in 
the skin of PT-S group and 3.30 and 4.16 folds in the skin 
of PT + S group comparing with the control group, their 
highest up regulation levels were detected in the skin of 
PT-S group. These findings clarified the fish skin secretes 
a large amount of mucins to increase the mucous defense 
function through trapping pathogen and physical barrier. 
The adding sodium chloride salt to the transport water of 
O. niloticus has a significant beneficial effect on mucous 
characteristics and mucin genes expression; these effects 
may come from the direct effect of water salinity. The 
upregulation of mucin gene expression in this investi-
gation came in line with that of Ángeles (2012) [27] and 
Tacchi, et al. (2015) [28] reported increased production 
of cutaneous mucosal secretions in response to stress. 
Significant up-regulated of mucin genes were reported in 
the post transport fish by Tacchi et al. (2015) [28].

Antimicrobial peptides are a component of the innate 
immune system found in the surface layer of cytolytic 
and microbicidal epithelial tissues to inhibit the growth 
of bacteria, fungi, viruses, and parasites [29], they act as 
the first line of defense against various pathogenic micro-
bial invasion without having high specificity or memory. 
Dβ-1, Dβ-2 and Cathelicidin-1 are antimicrobial peptides 
significantly down-regulated in the skin of O. niloticus 
of PT-S and PT + S group. This downregulation of anti-
microbial peptide genes was considerably more dramatic 
in the PT-S group indicating that transportation had an 
immune suppressive effect on the skin of O. niloticus In 
fact, antimicrobial peptide down-regulation in response 
to stress has been reported in fish by Noga et al. (2011) 
[30] and Tacchi et al. (2015) [28] whose found that a 
number of stresses lead to significant down regulation 
of AMPs. This downregulation was more dramatically in 
fish group transported in water without salt than in fish 
group transported in water with salt, the AMPs genes 
expression values were 7–17 times lower than controls 
[28]. The down regulation of AMPs genes expression in 
skin of PT + S O. niloticus group were lower than that 
of PT-S group indicating that the addition of salt to the 

Fig. 3 Scanning photographs for O. niloticus skin fish from control group taken at margination (x500 & x1000) showing goblet cells openings (yellow 
arrows) and the flat surface of squamous cells (red arrow)
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transportation water had stress mitigation effect and 
alleviated the transport immune suppressive effect, this 
findings were supported by Mirghaed and Ghelichpour 
(2019) [31] who found that the addition of 3 g/L salt to 
transportation water seems to be beneficial for com-
mon carp as it mitigates water quality deterioration and 
immunosuppression. Expression of Dβ-1 and Dβ-2 in 
rainbow trout gills decreased after transportation stress, 
while Cath-1 expression in common carp skin increased. 
These findings indicate that the innate immune response 
of fish can be modulated by transportation stress through 
the expression of AMPs [32].

Scanning electron microscopy of skin revealed impor-
tant differences between the O. niloticus groups. Skin 
section of the control group fish showed the regular 
arranged pattern of surface squamous cells and opening 
of goblet cells among superficial cells. In a PT-S group, 
scratched patches on the skin surface were reported and 
no goblet cells openings were observed on the exter-
nal surface. The results of the PT-S group come in line 
with that of Ángeles (2012) [27] who reported that the 
stress changed the number of goblet cells and increased 
the amounts of mucus production in teleost skin, and 
Baldisserotto et al. (2007) [33] who reported disruption 
of epidermal mucus. The skin section of the PT + S fish 

group showed moderate preservation of surface skin fea-
tures with goblet cells still open to the external surface 
and release their contents. These results suggest that 
salt has stress mitigation effect and may act as a regula-
tor for the release of mucus from goblet cells in response 
to transport stress, also salt reduces the transport stress 
through reducing the need for energy for osmoregulation 
and maintenance of homeostasis. These results were sup-
ported with Nikinmaa, et al. (1983) [34] who suggested 
that salt in transport water reduce the difference between 
the fish internal osmolality and that of its environment, 
thereby reducing physiological workload required to 
maintain body homoeostasis.

Generally; the results of this investigation recorded dis-
tinguish anti-inflammatory effect in the skin of O. niloti-
cus transported for 5 h in water without salt (PT-S group) 
coupled with up regulation in the MUC + 2 and MUC5-
AC genes expression and higher down regulation in the 
antimicrobial peptides Dβ-1, Dβ-2 and Cathelicidin-1 
genes expression comparing with their values in both O. 
niloticus control and the fish group transported in water 
with 5  g NaCl/L transport water (PT + S). Slight anti-
inflammatory effect was recorded in the PT + S fish group 
comparing to the O. niloticus control group. These results 
revealed that O. niloticus in the PT-S group were exposed 

Fig. 4 Scanning photographs for O. niloticus skin fish from PT-S group taken at margination (x500 & x1000) showing no or slightly clear goblet cells open-
ings with cell debris (red arrow) and white patches may represent thickened surface (yellow arrow)
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to higher transport stress effect and microbial invasion 
than the other two groups, and the addition of salt to the 
transport water mitigated the transport stress and reduce 
the chance of bacterial invasion through increasing the 
antimicrobial peptides production, enhancing mucous 
characteristics and restoring the mineral balance between 
fish and water and preserve the skin external surface. The 
complementary study showed that salt reduced inflam-
mation in the skin and altered the expression of some 
genes and hormones. The salt group had higher levels of 
interleukin 1 and TGF-1a, which are involved in wound 
healing and tissue repair, and lower levels of prolactin 
and growth hormone, which are involved in cell growth 
and differentiation. The salt group also had higher cor-
tisol levels, which is a stress hormone, than the control 
group and the post-transport group without salt [16].

Conclusion
this study findings have significant importance to the 
field of fish aquaculture and underscore the importance 
of skin mucosal health during transportation, so that 
we recommend the using of sodium chloride during O. 
niloticus transportation, particularly when the fish are 
transported to long distance because the benefits of its 
using during transport seem to be reducing the stress 
inflammatory effects of transport on O. niloticus through 
restores the mineral balance between fish and water, 

improves the fish health and immune responses through 
increase the AMPs production and regulate the mucous 
release during transportation.
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