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Abstract
Background  Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator (SPM), is derived from docosahexaenoic 
acid (DHA). It plays a key role in actively resolving inflammatory responses, which further reduces small intestinal 
damage. However, its regulation of the apoptosis triggered by endoplasmic reticulum (ER) stress in intestinal epithelial 
cells is still poorly understood. The intestinal porcine epithelial cells (IPEC-J2) were stimulated with tunicamycin to 
screen an optimal stimulation time and concentration to establish an ER stress model. Meanwhile, RvD1 (0, 1, 10, 20, 
and 50 nM) cytotoxicity and its impact on cell viability and the effective concentration for reducing ER stress and 
apoptosis were determined. Finally, the effects of RvD1 on ER stress and associated apoptosis were furtherly explored 
by flow cytometry analysis, AO/EB staining, RT-qPCR, and western blotting.

Results  The ER stress model of IPEC-J2 cells was successfully built by stimulating the cells with 1 µg/mL tunicamycin 
for 9 h. Certainly, the increased apoptosis and cell viability inhibition also appeared under the ER stress condition. 
RvD1 had no cytotoxicity, and its concentration of 1 nM significantly decreased cell viability inhibition  (p= 0.0154) 
and the total apoptosis rate of the cells from 14.13 to 10.00% (p= 0.0000). RvD1 at the concentration of 1 nM 
also significantly reduced the expression of glucose-regulated protein 78 (GRP-78, an ER stress marker gene) (p= 
0.0000) and pro-apoptotic gene Caspase-3 (p= 0.0368) and promoted the expression of B cell lymphoma 2 (Bcl-2, an 
anti-apoptotic gene)(p= 0.0008).

Conclusions  Collectively, the results shed light on the potential of RvD1 for alleviating apoptosis triggered by ER 
stress, which may indicate an essential role of RvD1 in maintaining intestinal health and homeostasis.
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Background
Intestine plays a critical role in various biological func-
tions, including nutrient digestion and absorption, 
immune regulation, microbe defense and hormone 
secretion. To fulfill these functions,  intestinal epithe-
lial cells have a well-developed endoplasmic reticulum 
(ER).  However, various physiological and pathological 
factors, including nutritional insufficiencies, pathogen 
infiltration, and bacterial infections, have the propensity 
to readily trigger endoplasmic reticulum (ER) stress in 
the epithelial cells of porcine intestines. This, in turn, cul-
minates in cellular apoptosis and subsequent impairment 
of the intestinal barrier. Consequently, nutrient absorp-
tion is compromised, immune defense against pathogens 
is weakened, and the overall health of pigs is ultimately 
compromised [1–5]. The unfolded and misfolded pro-
teins increase in ER lumen during the occurrence and 
development of ER stress, which causes an increase in 
glucose-regulated protein 78 (GRP-78) [6], a molecular 
chaperone, that participates in the correction of mis-
folded proteins and avoids the transport of unfolded and 
misfolded proteins. Thus, GRP-78 is often regarded as an 
ER stress marker gene [7–9].

At the early developmental stage, ER stress initiates 
unfolded protein response (UPR) that protects cells from 
stress and re-establishes cellular homeostasis [10, 11]. 
However, prolonged ER stress triggers cell apoptosis 
[10, 12], due to various UPR-induced mechanisms can’t 
successfully alleviate ER stress causing that ER function 
fails to return to normal [13, 14]. Tunicamycin is usually 
used to build ER stress, which in turn triggers cell apop-
tosis [15–17]. The occurrence of apoptosis mainly relies 
on the activation of intrinsic and/or extrinsic apoptosis 
pathways [10, 18]. Both pathways activate the apoptotic 
effector Caspase-3 [10, 19, 20]. B cell lymphoma 2 (Bcl-
2)-associated X protein (Bax), a pro-apoptotic protein, 
localizes at ER membrane [14], once activated, it oligo-
merizes to initiate intrinsic apoptosis [21]. In addition 
to its central role in intrinsic apoptosis pathway, anti-
apoptotic protein Bcl-2 also localizes at ER membrane 
and plays a protective role against ER stress [14]. Mutual 
antagonism between Bax and Bcl-2 regulates intrin-
sic apoptosis [22]. To sum up, the protein expression of 
apoptotic markers, for example, Caspase-3, Bax, and Bcl-
2, is broadly measured as conclusion basis of occurring 
apoptosis [23].

Resolvins, the newly discovered specialized pro-
resolving lipid mediators (SPMs) [24], are derived from 
ω-3 polyunsaturated fatty acids (PUFA) [25, 26]. They 
are classified with the E series (Resolvin E, RvE) and D 
series (Resolvin D, RvD) according to distinct struc-
tural forms [26]. The D series play a key role in actively 
resolving acute inflammatory responses [24, 26]. Doco-
sahexaenoic acid (DHA), an important ω-3 PUFA, can 

be ingested from food and conversed to RvD1 in ani-
mal body [27]. Research has shown that RvD1 prevents 
intestinal mucosal damage by reducing the gene expres-
sion levels of interleukin-1β, tumor necrosis factor-α, 
and CXCL1/keratinocyte chemoattractant[28].RvD1 
increases the clearance of bacteria and white blood 
cells mediated by macrophages in mouse lungs, thereby 
reducing neutrophil infiltration and lung histopathologi-
cal manifestations in mice [29].RvD1 inhibits the expres-
sion of inflammatory cytokines IL-6, IL-1, and TNF-α in 
muscle cells, reducing the inflammatory levels in muscle 
cells  [30].Additionally, studies have also found that RvD1 
alleviates hepatic steatosis and hepatocyte apoptosis 
through the JNK-mediated pathway [26]. RvD1 exerts its 
anti-inflammatory and anti-apoptotic effects in myocar-
dial cells by inhibiting the NF-κB and MAPK signaling 
pathways [31]. RvD1 downregulates NF-κB inflammatory 
signaling, inhibiting renal cell apoptosis [32]. These stud-
ies suggest that RvD1 not only alleviates cellular inflam-
mation but also inhibits cell apoptosis. However, it is 
currently unclear whether RvD1 can reduce apoptosis in 
intestinal epithelial cells, especially apoptosis triggered 
by endoplasmic reticulum stress, despite its ability to 
reduce small intestinal damage in mice through its anti-
inflammatory effect [28].

Therefore, in the present study, we aimed to elucidate 
the regulatory role of RvD1 in ER stress-induced apop-
tosis.This was based on the successful establishment of 
an ER stress model in intestinal porcine epithelial cells 
(IPEC-J2) using tunicamycin.

Results
The stimulation concentration and time of tunicamycin 
inducing ER stress
The IPEC-J2 cells were treated with varying concentra-
tions of tunicamycin (0, 0.5, 1, and 2 µg/mL) for 6 h. As 
shown in Fig.  1A and B, tunicamycin concentrations at 
0.5, 1, and 2  µg/mL significantly increased the protein 
expression of GRP-78, an ER stress symbol gene, com-
pared with the control group (p = 0.0000, 0.0000, 0.0000). 
The protein expression of GRP-78 in the 1 µg/mL tunica-
mycin group was significantly higher than that in the 
0.5 µg/mL tunicamycin group(p= 0.0016), but there was 
no significant difference compared with the 2  µg/mL 
tunicamycin group. Thus, the 1 µg/mL tunicamycin was 
used for subsequent experiment.

Next, the IPEC-J2 cells were stimulated with 1 µg/mL 
tunicamycin for different durations (0, 6, 9, 12, and 15 h). 
Compared with the control group, the protein expres-
sion of GRP-78  significantly increased in alltunicamy-
cin treatment groups (p= 0.0031, 0.0000, 0.0000, 0.0000) 
(Fig. 1C and D). The protein expression of GRP-78 at 9 h 
of stimulation was significantly higher than that at 6 h (p 
= 0.0000),  but there were no significant differences with 
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12 and 15  h of stimulation  (Fig.  1C and D). Based on 
these results, the cells were treated with 1 µg/mL tunic-
amycin for 9 h to establish the ER stress model. Under 
these ER stress-inducing conditions, the cells exhibited 
significant apoptosis, as identified by morphology after 
AO/EB staining (Fig. 1E).

RvD1 cytotoxicity and its effects on cell viability
The IPEC-J2 cells were treated with different concen-
trations of RvD1 (0, 1, 10, 20, and 50 nM) for 24 h to 
determine the cytotoxicity of RvD1  and its effects 
on cell viability. As shown in Fig.  2, none of the RvD1 

concentrations had a significant cytotoxic effect or influ-
ence on cell viability in IPEC-J2 cells.

The effective concentration of RvD1 relieving ER stress and 
apoptosis
The IPEC-J2 cells were pre-treated for 15  h using dif-
ferent concentrations of RvD1 (0, 1, 10, 20, and 50 nM). 
After this time, the cells were further treated for 9  h 
with the RvD1 and 1  µg/mL tunicamycin. As shown in 
Fig. 3A, compared with the control group, the cell viabil-
ity significantly decreased in all the tunicamycin stimu-
lation groups (p= 0.0000, 0.0000, 0.0000, 0.0000, 0.0000). 
Compared with the sole tunicamycin stimulation, cell 

Fig. 1  Determination of the stimulation concentration and time of tunicamycin inducing ER stress. (A) The protein expression of GRP-78 and GAPDH 
when the IPEC-J2 cells were stimulated for 6 h with different concentrations of tunicamycin (0, 0.5, 1, and 2 µg/mL). The blots were cut prior to hybridiza-
tion with antibodies in order to focus on the specific protein bands of interest. As a result, we do not have full-length images of the membranes. However, 
the cropped images accurately reflect the expression of the target protein. (B) The relative gray value of GRP-78 when the IPEC-J2 cells were stimulated 
for 6 h with different concentrations of tunicamycin (0, 0.5, 1, and 2 µg/mL). (C) The protein expression of GRP-78 and GAPDH when the IPEC-J2 cells 
were stimulated for different durations (0, 6, 9, 12, and 15 h) with 1 µg/mL tunicamycin. (D) The relative gray value of GRP-78 when the IPEC-J2 cells were 
stimulated for different durations (0, 6, 9, 12, and 15 h) with 1 µg/mL tunicamycin. (E) Apoptosis presentation using AO/EB fluorescent staining when the 
cells were stimulated for 9 h with 1 µg/mL tunicamycin to build the ER stress model. The cell morphology was photographed with an inverted micro-
scope (×200). The viable cells appeared uniformly green, the apoptotic cells showed bright green in the nuclei as chromatin condensation and nuclear 
fragmentation, and the necrotic cells presented bright orange. Different lowercase letters on the graph bars indicate statistically significant differences 
among the groups (ANOVA with Duncan’s test, p < 0.05). Data are presented as means ± SEM. The blots were cropped. The samples derived from the same 
experiment and that blots were processed in parallel. Tuni, tunicamycin; GRP-78, glucose-regulated protein 78; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase, an internal reference protein

 



Page 4 of 11Zhu et al. BMC Veterinary Research          (2024) 20:125 

viability significantly enhanced with 1 and 10 nM RvD1 
(p= 0.0154, 0.0202).

As shown in Fig.  3B C, compared with the control 
group, tunicamycin stimulation significantly increased 
the gene expression GRP-78 (p= 0.0000, 0.0001, 

0.0000) and Caspase-3 (p= 0.0000, 0.0011, 0.0000). Com-
pared with the sole tunicamycin stimulation,  1 nM RvD1 
significantly decreased the gene expression of GRP-78 
(p= 0.0037, 0.0353) and Caspase-3 (p= 0.0000, 0.0000). 
The 1 nM RvD1  treatment resulted in a greater decrease 

Fig. 3  Determination of the effective concentration of RvD1 relieving ER stress and apoptosis. (A) The effects of various concentrations of RvD1 (0, 1, 10, 
20, 50 nM) on cell viability. (B) The effects of various concentrations of RvD1 (0, 1, 10, 20, 50 nM) on the gene expression of GRP-78. (C) The effects of 1 
and 10 nM RvD1 on the gene expression of Caspase-3. (D) The effects of 1 and 10 nM RvD1 on cell morphology. The cell morphology was photographed 
with an inverted microscope (×100). Different lowercase letters on the graph bars indicate statistically significant differences among the groups (ANOVA 
with Duncan’s test, p < 0.05). Data are presented as means ± SEM. The analysis of gene expression and cell viability are 3 and 8 replicates in each group, 
respectively. RvD1, Resolvin D1; Tuni, tunicamycin; GRP-78, glucose-regulated protein 78

 

Fig. 2  RvD1 cytotoxicity and its effects on cell viability. (A) RvD1 cytotoxicity test. (B) The effects of RvD1 on cell viability. Without a lowercase letter on 
the graph bars indicates no significant differences among the groups (ANOVA with Duncan’s test). Data are presented as means ± SEM. RvD1, Resolvin D1
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in the gene expression of GRP-78 and Caspase-3 than 
the  10 nM RvD1 treatment, but the differences were 
not significant. The changes of cell morphology further 
confirmed above results. The sole tunicamycin stimula-
tion caused cell shrinkage and decreased the number of 
the cells, but the 1 and 10 nM RvD1 reduced the nega-
tive effects to a certain extent (Fig.  3D). Combining the 
results in Fig. 3, the 1 nM RvD1 was selected to treat cells 
for relieving ER stress and associated apoptosis.

RvD1 reduced apoptosis induced by ER stress
As shown in Fig.  4A and B, flow cytometry analysis 
showed that the cell apoptosis rate (early, late, and total) 
in the tunicamycin   (p= 0.0000, 0.0000, 0.0000) and 
tunicamycin + RvD1 (p= 0.0000, 0.0001, 0.0000) groups 
was significantly higher than that in the control groups. 

Compared with the tunicamycin group, the apoptosis 
rate (early, late, and total) significantly decreased in the 
tunicamycin + RvD1 group   (p= 0.0000, 0.0005, 0.0000). 
To further determine the effect which RvD1 decreased 
the apoptosis induced by tunicamycin, the apoptotic cells 
were identified by morphology after AO/EB staining. 
After dyeing, the viable cells appeared uniformly green, 
the apoptotic cells showed bright green in the nuclei as 
chromatin condensation and nuclear fragmentation, and 
the necrotic cells presented bright orange. As shown in 
Fig.  4C, tunicamycin significantly promoted apoptosis, 
but RvD1 effectively alleviated this apoptosis, which fur-
ther confirmed the results of flow cytometry analysis.

Fig. 4  RvD1 reduced apoptosis induced by tunicamycin. After stimulation, the cells were stained with Annexin V-APC/7-AAD for flow cytometry analysis 
and with AO/EB for morphological assessment. (A) Apoptosis determination using flow cytometry. The Q1, Q2, Q3, and Q4 in the flow cytometry im-
ages indicated cell debris, late apoptotic cells, early apoptotic cells, and viable cells, respectively. (B) Apoptosis rate analysis based on flow cytometry. (C) 
Apoptosis presentation using AO/EB fluorescent staining. The cell morphology was photographed with an inverted microscope (×200). The viable cells 
appeared uniformly green, the apoptotic cells showed bright green in the nuclei as chromatin condensation and nuclear fragmentation, and the necrotic 
cells presented bright orange. Different lowercase letters on the graph bars indicate statistically significant differences among the groups (ANOVA with 
Duncan’s test, p < 0.05). Data are presented as means ± SEM. RvD1, Resolvin D1; Tuni, tunicamycin; Tuni + RvD1, co-treatment with RvD1 and tunicamycin
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RvD1 decreased the expression of apoptosis and ER stress 
genes
As shown in Fig.  5, compared with the control groups, 
the gene expression of GRP-78 (p= 0.0000, 0.0000) and 
Caspase-3 (p= 0.0000, 0.0001)   significantly increased 
in the tunicamycin and tunicamycin + RvD1 groups. 
Co-treatment with tunicamycin and RvD1 significantly 
decreased the gene expression of GRP-78 (p= 0.0000) and 
Caspase-3 (p= 0.0095), compared with the sole tunica-
mycin stimulation. Although the gene expression of Bax 
and Caspase-9 was not significant differences among the 
groups, tunicamycin and tunicamycin + RvD1 signifi-
cantly decreased the gene expression of Bcl-2 (p= 0.0000, 
0.0050) and the ratio of Bcl-2/Bax (p= 0.0050, 0.0126), 
compared with the control groups. Tunicamycin + RvD1 
significantly increased the gene expression of Bcl-2 (p= 
0.0000) and the ratio of Bcl-2/Bax (p= 0.0165), compared 
with the tunicamycin group.

As shown in Fig.  6, the protein expression of GRP-
78  (p= 0.0000) and Caspase-3  (p= 0.0026)  signifi-
cantly increased in the tunicamycin group, compared 
with the control groups. Tunicamycin + RvD1 signifi-
cantly decreased the protein expression of GRP-78  (p= 
0.0000) and Caspase-3  (p= 0.0368), compared with the 
tunicamycin group. Although the protein expression of 
Bax was not significantly different among the groups, 

Tunicamycin and tunicamycin + RvD1 significantly 
decreased the protein expression of Bcl-2 (p= 0.0000, 
0.0001) compared with the control groups. Besides, 
tunicamycin + RvD1 significantly increased the protein 
expression of Bcl-2  (p= 0.0008), compared with the sole 
tunicamycin treatment.

Discussion
Tunicamycin, a kind of nucleoside antibiotic, is com-
monly used as a specific drug for inducing ER stress 
[33–35]. ER stress has been induced by tunicamycin 
in the concentration range of 1-5 μg/mL and treatment 
time range of 4-24 h In HepG2, adipocytes (3T3-L1), 
HeLa, and other cell types [33–39]. Based on these pre-
vious studies, the IPEC-J2 cells in this study were stimu-
lated with tunicamycin for 5 time periods (0, 6, 9, 12, and 
15 h) and 4 concentration gradients (0, 0.5, 1, and 2 µg/
mL). Our research indicated that the ER stress mode of 
IPEC-J2 cells could be successfully built by stimulating 
the cells for 9 h with 1 µg/mL tunicamycin. In a study by 
Wen et al. [40], they stimulated mammary epithelial cell 
line, MCF-7 cells, for 24 h with tunicamycin at four dif-
ferent concentrations (0, 0.1, 0.5, and 1  µg/mL), finding 
that tunicamycin concentrations of 0.5 and 1 µg/mL sig-
nificantly increased the expression of GRP-78 and caused 
ER stress, and they finally selected 1 µg/mL tunicamycin 

Fig. 5  The mRNA expression of apoptosis and endoplasmic reticulum (ER) stress genes. Different lowercase letters on the graph bars indicate statistically 
significant differences among the groups (ANOVA with Duncan’s test, p < 0.05). Data are presented as means ± SEM. RvD1, Resolvin D1; Tuni, tunicamycin; 
Tuni + RvD1, co-treatment with RvD1 and tunicamycin; GRP-78, glucose-regulated protein 78; Bcl-2, B cell lymphoma 2; Bax, Bcl-2-associated X protein
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to build ER stress model for their follow-up experiment. 
Similarly, Yang et al. [41]. treated human umbilical vein 
endothelial cells for 24 h with tunicamycin at five differ-
ent concentrations (0, 0.25, 0.5, 1, and 2  µg/mL), find-
ing that all concentrations (except concentration = 0) 
of tunicamycin significantly increased the expression 
of GRP-78 and caused ER stress, and the expression of 
GRP-78 was not a significant difference among the three 
concentrations (0.5, 1, and 2  µg/mL). Finally, they also 
chose 1 µg/mL tunicamycin to build ER stress model for 
their follow-up experiment. For IPEC-J2 cells, 1  µg/mL 
tunicamycin stimulated them for 24  h, which increased 
the expression of GRP-78 and successfully built ER stress 
model [33]. Here, our results indicated that three differ-
ent concentrations (0.5, 1, 2 µg/mL) of tunicamycin sig-
nificantly increased the expression of GRP-78, but the 
expression differences were not significant between 1 and 
2 µg/mL tunicamycin stimulation, thus 1 µg/mL tunica-
mycin was used for the follow-up experiments. Our 
results corroborated the findings reported in previous 
those studies [33, 40, 41].

The distinction lies in the stimulation time of tunica-
mycin. Previous research did not screen the stimulation 
time, but usually adopts a fix-time 24 h [33, 40, 41]. To 
successfully establish the ER stress model of IPEC-J2 

cells, in this study, we not only confirmed a suitable stim-
ulation dose, but also determined the optimal stimulation 
time of tunicamycin. The protein expression of GRP-78 
at stimulation 9 h of stimulation was significantly higher 
than that at stimulation 6 h and was not significantly dif-
ferences with that at stimulation 12 and 15  h of stimu-
lation. Therefore, the IPEC-J2 cells were stimulated for 
9 h to establish ER stress model for the follow-up experi-
ments in the current study.

RvD1, a bioactive pro-resolving lipid mediator, usually 
dampens pathological inflammatory responses [42]. It did 
not induce cytotoxicity in human osteoblastic osteosar-
coma cell line MG-63 cells at concentrations of 50, 100, 
and 200 nM [43]. Besides, it also had no cytotoxic effects 
on human gingival fibroblasts at concentrations between 
1 and 1,000 nM [44]. Furtherly, it was not toxic up to 10 
µM in human osteoarthritis chondrocytes [45]. In this 
study, all the stimulation concentrations (0, 1, 10, 20, and 
50 nM) of RvD1 were far below those in previous find-
ings and had no cytotoxicity in IPEC-J2 cells, which was 
similar to previous research [46]. Meanwhile, except for 
no cytotoxicity, we also revealed that RvD1 did not affect 
cell viability of normal IPEC-J2 cells but reduced tunica-
mycin induced IPEC-J2 cell viability inhibition at the 
stimulation concentrations of 1 and 10 nM. Cao et al. [43] 

Fig. 6  The protein expression of apoptosis and endoplasmic reticulum (ER) stress genes. The blots were cut prior to hybridization with antibodies in 
order to focus on the specific protein bands of interest. As a result, we do not have full-length images of the membranes. However, the cropped images 
accurately reflect the expression of the target protein. Different lowercase letters on the graph bars indicate statistically significant differences among the 
groups (ANOVA with Duncan’s test, p < 0.05). Data are presented as means ± SEM. The blots were cropped. The samples derived from the same experi-
ment and that blots were processed in parallel. RvD1, Resolvin D1; Tuni, tunicamycin; Tuni + RvD1: co-treatment with RvD1 and tunicamycin; GRP-78, 
glucose-regulated protein 78; Bcl-2, B cell lymphoma 2; Bax, Bcl-2-associated X protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase, an internal 
reference protein
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found that RvD1 (50, 100, and 200 nM) not only had no 
effects on the viability of MG-63 cells, but repressed LPS 
induced proliferation inhibition of the cells. In a study 
by Xu et al. [47], their results indicated that RvD1 (100 
and 200 nM) significantly rescued 1-methyl-4-phenyl-
pyridinium ion (Mpp+) induced viability downregulation 
of pheochromocytoma (PC12) cells. These observations 
also supported our results in this study.

In addition to the effects of RvD1 on cytotoxicity and 
viability in IPEC-J2 cells, it also attenuated apoptosis trig-
gered by ER stress in this study. The ER stress model of 
IPEC-J2 cells was successfully built by stimulating the 
cells for 9 h with 1 µg/mL tunicamycin, which has been 
discussed above. Tunicamycin induced ER stress, which 
in turn triggers apoptosis that has been reported in many 
studies [15–17]. The apoptosis triggered by ER stress has 
one thing in common: the expression of GRP-78 and pro-
apoptotic protein Bax and caspase-3 is increased, but the 
expression of anti-apoptotic protein Bcl-2 and the ratio 
of Bcl-2/Bax are decreased [48–50]. In IPEC-J2 cells, ER 
stress induced by tunicamycin also increased the expres-
sion of GRP-78 and Caspase-3 that caused apoptosis [33]. 
In this study, the test results of flow cytometry and AO/
EB staining showed that tunicamycin increased the apop-
tosis rate of IPEC-J2 cells, but RvD1 inhibited the pro-
apoptotic effect. Furthermore, tunicamycin increased the 
gene and protein expression of Caspase-3 and GRP-78 
and decreased the expression of anti-apoptotic protein 
Bcl-2, but RvD1 mitigated the adverse impacts. Here, our 
results not only confirmed the pro-apoptotic effect of ER 
stress, but also indicated the anti-apoptotic influence of 
RvD1 in IPEC-J2 cells. GRP-78 as an upstream protein of 
ER stress activates the downstream expression of CHOP 
and caspase-3 to initiate apoptosis. In this study, RvD1 
decreased the gene and protein expression of GRP-78 
and Caspase-3 and improved the expression of Bcl-2. It is 
reasonable to speculate that GRP-78/Caspase-3 pathways 
involved in the protective effects of RvD1 against ER 
stress-induced apoptosis.Jung et al. [26]. found that RvD1 
(2, 5, and 10 nM) attenuated apoptosis and the expres-
sion of Caspase-3 in HepG2 cells. RvD1 concentration of 
10 ng/mL suppressed lipopolysaccharide (LPS) caused 
apoptosis increase and the expression up-regulation 
of cleaved-Caspase-3 in renal cells [32]. RvD1 (50 nM) 
inhibited macrophages from oxidative stress-induced 
apoptosis and promoted the expression of anti-apoptotic 
protein Bcl-2 and Bcl-xL [51]. Furthermore, RvD1 also 
rescued the apoptosis of cardiomyocytes [31], retinal 
cells [52], and renal tissues [53]. These findings combine 
to further demonstrate that RvD1 reduces ER stress-
induced apoptosis in IPEC-J2 cells.

Conclusion
Stimulation with tunicamycin (1 µg/mL)  for 9 h success-
fully establishes an ER stress model and then induces 
apoptosis in IPEC-J2 cells. RvD1 has no cytotoxic effects 
and alleviates apoptosis and viability inhibition through 
attenuating ER stress and regulating apoptosis-related 
protein (Caspase-3, Bcl, and Bax) expression in the cells.

Methods
Cell culture
IPEC-J2 cells are a kind of porcine intestinal columnar 
epithelial cell derived from the mid-jejunum of piglets 
[54]. The cell line used in the experiment was kindly 
donated from the laboratory of the Academy of Animal 
Science, China Agricultural University. The cells were 
cultured in Dulbecco’s Modified Eagle’s Medium Nutri-
ent Mixture F-12 (DMEM/F-12; Gibco, Beijing, China) 
supplemented with 10% fetal bovine serum (FBS; Gibco, 
Waltham, MA, USA), 1% 100×ITS liquid media supple-
ment (Sigma-Aldrich, St. Louis, MO, USA), and 1% peni-
cillin/streptomycin (Life Technologies, Carlsbad, CA, 
USA) in a humidified incubator at 37% with 5% CO2. The 
cells at two to three passages were used for the following 
experiments.

Cell viability and cytotoxicity assay
The cells were seeded in a 96-well plate at a density of 
8,000 cells per well. At 24 h after culture, the cells grew 
approximately to 50–60% confluence, and then they were 
treated for 24 h with different concentrations of RvD1 (0, 
1, 10, 20, and 50 nM) for analyzing the effects of RvD1 on 
cell viability and cytotoxicity. Besides, the cells were pre-
treated for 15 h with different concentrations of RvD1 (0, 
1, 10, 20, and 50 nM) and then co-treated for 9  h with 
1  µg/mL tunicamycin and the pre-treatment concentra-
tions of RvD1 to determine the effects of tunicamycin 
and RvD1 on cell viability/proliferation. Cell viability 
was measured using the enhanced Cell Counting Kit-8 
(CCK-8) kit (Beyotime, Shanghai, China). After stimula-
tion, 10 µL of CCK-8 solution was added to each treat-
ment well and incubated for 2  h. The optical density 
(OD) value was detected using a multifunctional micro-
plate reader (BioTek, Winooski, VT, USA) at absorbance 
450  nm. Cytotoxicity was analyzed using the lactate 
dehydrogenase (LDH) cytotoxicity assay kit (Beyotime, 
Shanghai, China). After stimulation, the 96-well plate 
was centrifuged to remove the supernatant, and 150 µL 
of LDH release solution (10-fold dilution) was added to 
each treatment well and incubated for 1 h. Next, the plate 
was centrifuged again to aspirate the supernatant 120 
µL into a new 96-well plate, and 60 µL of LDH working 
fluids were add into the supernatant of each well in the 
new plate. The OD value of absorbance was measured at 
a wavelength of 490 nm.
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Flow cytometry/annexin V-APC/7-AAD staining
The cells were seeded in 6-well plates at a density of 
2.5 × 105 cells per well with 2 mL of the normal medium. 
When the cells grew to 50–60% confluence, they were 
divided into 4 groups (control group, RvD1 group, Tuni 
group, and RvD1 + Tuni group) with 3 repetitions per 
group. Their treatments contain two stages. At the first 
stage, the control and Tuni groups of cells were cul-
tured for 15 h with normal medium, and the RvD1 and 
RvD1 + Tuni groups of cells were cultured for 15  h with 
normal medium containing 1 nM RvD1. At the second 
stage, the old medium in the control, RvD1, Tuni, and 
RvD1 + Tuni groups was replaced using fresh medium, 
fresh medium containing 1 nM RvD1, fresh medium 
containing 1  µg/mL tunicamycin, and fresh medium 
containing both 1  µg/mL tunicamycin and 1 nM RvD1, 
respectively. After replacing with the fresh medium, 
all the 4 groups of cells were continually cultured for 
another 9 h. Thus, all the 4 groups of cells were treated 
for 24 h in total with different stimulation conditions.

At 24  h after treatment, the cells were washed twice 
with PBS and then trypsinized. Next, they were cen-
trifuged for 5  min at 300 × g, resuspended in PBS, and 
centrifuged again. Then, the cells were resuspended in 
Annexin V binding buffer and incubated for 15 min with 
5 µL of Annexin V-APC and 7-AAD at room tempera-
ture in the dark. After the incubation, the apoptosis rate 
was analyzed by flow cytometry (BD Biosciences, Heidel-
berg, Germany), according to the manufacturer’s instruc-
tions. Flow cytometry data analysis was performed using 
FlowJo 10 software.

AO/EB staining
For a more intuitive observation of apoptosis, the cells 
were dyed with an AO/EB staining kit (Sangon Biotech, 
Shanghai, China). The cells were seeded in a 24-well 
plate at a density of 7 × 104 cells per well. When the cells 
grew to 50–60% confluence, they were treated accord-
ing to the description in flow cytometry analysis. At 24 h 
after treatment, the cells were washed twice with PBS 
and incubated for 10 min with 5 µL of AO staining solu-
tion and EB staining solution at room temperature in the 
dark. After the incubation, the fluorescence images of 
the cells were observed using an inverted fluorescence 
microscope (Leica, Wetzlar, Germany).

Total RNA isolation, reverse transcription, and real-time 
quantitative PCR analysis
After treatment, the total cellular RNAs were isolated 
using the TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA), and their concentrations were detected with the 
NanoDrop-2000 Spectrophotometer (Thermo Scien-
tific, Wilmington, USA). The obtained total RNAs were 
reverse-transcribed using the HifairR III 1st Strand 

cDNA Synthesis SuperMix (YESEN, Shanghai, China). 
The reverse transcription was performed in a Pro-
Flex PCR System (Life Technologies, Grand Island, NY, 
USA), and its incubation program was indicated below 
as: “25 ℃ for 5 min, 55 ℃ for 15 min, and 85 ℃ for 5 
min”. After reverse transcription, the obtained cDNA 
samples were amplified using the Hieff UNICONR Uni-
versal Blue qPCR SYBR Green Master Mix kit (YESEN, 
Shanghai, China) and gene primers on an ABI QuantStu-
dio6 Real-Time PCR system (Applied Biosystems, Foster 
City, USA). The amplification procedure was presented 
below as: “95 ℃ for 2 min, 40 cycles at 95 ℃ for 10 sec 
and 60 ℃ for 30 sec”, and a melting curve program (at 
95 ℃ for 15  s, 60 ℃ for 60  s, and 95 ℃ for 15  s) was 
added to its tail to ensure specific amplification. The cod-
ing sequences (CDs) of target genes were found in NCBI 
GeneBank and used for designing specific primers in 
NCBI primer-BLAST. The designed primers were synthe-
sized and purified by Sangon Biotech Co., Ltd (Shanghai, 
China). The primer sequences were provided in the sup-
plementary Table S1. The relative expression amounts of 
mRNA were normalized with the internal reference gene 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
and calculated by the classic 2−ΔΔCT method.

Protein extraction and western blotting analysis
After treatment, the total cellular protein was extracted 
at 4  °C using radioimmunoprecipitation (RIPA) lysis 
buffer (Beyotime, Shanghai, China) and protease inhibi-
tor phenylmethanesulfonyl fluoride (PMSF; Beyotime, 
Shanghai, China) according to the ratio of 100:1, and its 
concentration was determined using the bi-cinchoninic 
acid (BCA) protein assay kit (CWBIO, Beijing, China) on 
a multifunctional microplate reader (BioTek, Winooski, 
VT, USA). The protein was adjusted to an equal con-
centration of 1.5 µg/µL using lysis buffer, mixed with 4 × 
loading buffer (Beyotime, Shanghai, China), and heated 
at 100 °C for 15 min. A total of 15 µg proteins (10 µL of 
protein solution) per sample were size-fractionated by 
SDS-PAGE gel (Life Technologies, Grand Island, NY, 
USA) and electrotransferred onto a polyvinylidene diflu-
oride (PVDF) membrane (GE Healthcare, Waukesha, WI, 
USA). After being blocked for 1 h at room temperature 
with 5% skimmed milk powder (Solarbio, Beijing, China) 
in Tris-buffered saline with Tween-20 (TBST) buffer, the 
membrane was incubated overnight at 4 ℃ with primary 
antibody. Subsequently, the membrane was washed three 
times for 10 min each with TBST buffer and then incu-
bated for 1 h at room temperature with secondary anti-
body. After incubation, the membrane was washed three 
times again for 10  min each with TBST buffer. Finally, 
immunoreactive bands were visualized with enhanced 
chemiluminescent (ECL) substrate reagent (Bio-Rad, 
Hercules, CA, USA) on a ChemiDoc™ Touch Imaging 
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System (Bio-Rad, Hercules, CA, USA). The band inten-
sity was quantified as gray value using ImageJ software 
(National Institutes of Health, Bethesda, MD, USA), and 
the relative protein levels were normalized by the inter-
nal reference protein GAPDH. The primary antibodies 
included GRP-78 (66574-1-Ig, 1:1000 dilution; Protein-
tech, Wuhan, China), Caspase-3 (#9668, 1:800 dilution; 
CST, Danvers, MA, USA), Bcl-2 (#15,071, 1:800 dilution; 
CST, Danvers, MA, USA), Bax (#14,796, 1:1000 dilution; 
CST, Danvers, MA, USA), and GAPDH (#3683, 1:1000 
dilution; CST, Danvers, MA, USA). The secondary anti-
bodies included Goat anti-Mouse IgG (#31,430, 1:2000 
dilution; ThermoFisher, Waltham, MA, USA) and Goat 
anti-Rabbit IgG (#31,460, 1:2000 dilution; ThermoFisher, 
Waltham, MA, USA).

Statistical analysis
Statistical analysis was carried out using statistics soft-
ware IBM SPSS version 22.0 (IBM Inc., Armonk, NY, 
USA). One-way ANOVA followed by Duncan’s multiple 
range test was performed to determine the statistical dif-
ferences among the groups. Probability values (p-values) 
less than 0.05 (p < 0.05) indicate statistically significant. 
The data obtained are presented as means ± standard 
error of the mean (SEM).
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