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Abstract 

Background  Plasmodium, Haemoproteus and Leucocytozoon are three mainly studied blood parasites known to 
cause malarial and pseudomalarial infections in avian worldwide. Although Sarawak is a biodiversity hotspot, molecu-
lar data on blood parasite diversity in birds are absent. The objective of the study is to determine the prevalence of 
blood parasite in Asian Glossy Starlings (AGS), an urban bird with high population density in Sarawak and to elucidate 
the phylogenetic relationship with other blood parasite.

Methods  Twenty-nine carcasses of juvenile AGS that were succumbed to death due to window collision were col-
lected around the vicinity of Universiti Malaysia Sarawak. Nested-multiplex and nested PCR targeting the Cytochrome 
B gene were used to detect Plasmodium and Haemoproteus, and Leucocytozoon respectively. Two primer sets were 
used for Haemoproteus detection to increase detection sensitivity, with one being a genus-specific primer.

Results  Fourteen samples (prevalence rate: 48.28%) were found positive for avian Plasmodium. Phylogenetic analysis 
divided our sequences into five lineages, pFANTAIL01, pCOLL4, pACCBAD01, pALPSIS01 and pALPSIS02, with two 
lineages being novel. No Haemoproteus and Leucocytozoon was found in this study. However, Haemoproteus-specific 
primer used amplified our Plasmodium samples, making the primer non-specific to Haemoproteus only.

Conclusion  This is the first blood parasite detection study on AGS using carcasses and blood clot as sample source 
in Sarawak. Due to the scarcity of longer sequences from regions with high genetic plasticity, usage of genus-specific 
primers should be validated with sequencing to ensure correct prevalence interpretation.
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Introduction
Avian haemosporidia, consisting of Plasmodium, 
Haemoproteus and Leucocytozoon genera, are blood obli-
gated protozoans which causes malaria and malaria-like 
diseases in susceptible avian hosts [1–3]. Disease pres-
entations can range from asymptomatic to potentially 
fatal depending on haemosporidian lineage and bird 
species. Its importance came to light after the extirpa-
tion of numerous endemic Hawaiian wild birds in the 
1900s due to the spread of Plasmodium relictum lineage, 
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pGRW4, through the introduction of mosquito vector, 
Culex quinquefasciatus and infected exotic birds [4–6]. 
To this day, it is considered as the key factor limiting the 
presence of endemic birds on the island [7]. Since then, 
routine molecular malarial screening in captive and 
migratory birds has led to the discovery of vast diversity 
of avian haemosporidia lineage including Plasmodium, 
Haemoproteus and Leucocytozoon genera [8–10].

There are two routine methods used for haemosporid-
ian parasites detection, which are microscopic observa-
tion of erythrocytic stages and PCR methods to increase 
the detection sensitivity especially in low parasite density 
and mixed species or lineage infection [3, 11]. Inclusion 
of both methods detected the presence of morphospecies 
and high lineage diversity using the conserved mitochon-
drial gene such as cytochrome B (CytB) and cytochrome 
oxidase subunit 1 (COI) [12]. PCR protocols for detect-
ing avian haemosporidian comprises of consensus PCR 
protocol, which is able to simultaneously amplify the 
conserve gene of the three avian haemosporidian genera 
[13–18]. However, the limitation of the available nested 
PCR protocols for avian malaria detection is its inabil-
ity to immediately discriminate mixed genus or lineages 
without requiring further downstream methods such 
as recombinant DNA technology or next generation 
sequencing (NGS) [16, 19, 20]. To rectify this problem, 
multiplexing protocols has been deduced to increase 
specificity in detection of mixed genera infection without 
requiring downstream protocols for genera identification 
and reduce biased amplification of genera with higher 
template copy especially in the context of wildlife sam-
ples [21, 22].

In Malaysia, the first avian haemosporidian preva-
lence study was done in three states, Sarawak, Johor and 
Pahang [23]. Utilising microscopy as detection method, 
a concise checklist of haemosporidian parasites from 
wild birds based of morphology was produced. How-
ever, this limited the data up to species level for detected 
Plasmodium and Haemoproteus species, whereas up to 
genus only for Leucocytozoon. As microscopic method 
was used, molecular information such as lineages from 
this study was not available and is insufficient for com-
parison with current available data [24]. Similar to previ-
ous study mentioned, another malarial prevalence study 
was also conducted but focused in Selangor, Malaysia 
which included both microscopy and PCR methods for 
detection [11]. Of the 30.3% positive samples, 16 parasite 
lineages were identified with 13 novel lineages (Haemo-
proteus: 10 lineages; Plasmodium: 3 lineages). Among 
the three previously described lineage, two (hCOLL2 
and hYWT2) were previously detected in Gansu prov-
ince, China [25]. This suggests that the lineage has a 

broad distribution or that transmission of malarial para-
site from migratory birds to local birds may be possible 
[26–28].

In Sarawak, Asian Glossy Starling (AGS; Aplonis 
panayensis; Family: Sturnidae) is an urban invasive bird 
with highest abundance [29, 30]. Its successful invasion 
in urban setting is attributed to its opportunistic nature 
to compete for nesting sites and ability to scavenge food 
resource from its surrounding apart from fruits such as 
Ficus benjamina [29–31]. Majority of studies relating to 
AGS in Malaysia revolves around roosting site [31, 32], 
diet composition [29] and characterization of zoonotic 
endoparasite for public health surveillance [33]. To date, 
no malarial detection has been done in AGS in Malaysia, 
with only one prevalence data from Singapore through 
microscopy characterization obtaining zero Haemopro-
teus prevalence [34]. With this, we took the opportunity 
to conduct a malarial prevalence study on deceased juve-
nile AGS that were succumbed to urban mortality due to 
window collision.

The aim of this study is to investigate the avian malarial 
diversity using molecular methods in AGS in Sarawak, 
Malaysian Borneo and the phylogenetic relationship with 
other haemosporidia around the world.

Materials and methods
Sample collection
Twenty-nine blood clot samples were obtained from 
deceased juvenile AGS that were found in the vicinity of 
Universiti Malaysia Sarawak (UNIMAS), Sarawak from 
October to December 2021. The presumed cause of death 
of the birds were due to window smashing during even-
ing foraging. No further necropsy observation was done. 
Identification of juvenile birds were identified through 
plumage colouration as described by Myers [35]. Blood 
clots were taken from the heart of individual bird and 
kept in 200uL of lysis buffer from the High Pure Viral 
Nucleic Acid Extraction kit (Roche, Switzerland) and 
phosphate buffered saline (PBS) respectively in 1:1 ratio 
at -20 °C until processed.

Haemosporidian amplification
Genomic DNA (gDNA) extraction was done using High 
Pure Viral Nucleic Acid Extraction kit (Roche, Switzer-
land). Molecular identification was done using the nested 
and nested-multiplex PCR protocol targeting the CytB 
gene of Plasmodium, Haemoproteus and Leucoytozoon 
(see Fig. 1 for primer binding site). All primers used were 
previously designed by Pacheco et al. [22], except for the 
nested amplification primer set for Leucocytozoon which 
was designed by Hellgren and colleagues [16]. (see Addi-
tional file; Fig. 1 for haemosporidian detection workflow).
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Primary amplification PCR conditions were done using 
primer set AE974/AE299 with PCR conditions are as fol-
lowed: 2 min at 94 °C; 36 cycles of 94 °C for 1 min; 56 °C 
for 1  min, and 72  °C for 1  min; with final extension for 
10  min at 72  °C. Secondary amplification for Haemo-
proteus and Plasmodium detection was done using the 
AE980/AE982 and AE983/AE985 primers with expected 
band size of 346 and 580 bp respectively. Further valida-
tion for negative Haemoproteus genus detection through 
multiplexing was done using specific primer HaemF/
AE982, with expected band size of 820  bp to obtain 
additional positives. PCR conditions for the two second-
ary nested PCR are identical to the primary amplifica-
tion but performed with varied with different annealing 
temperature (refer to Additional file: Table S1). On the 
other hand, Leucocytozoon detection was done using 
primer HaemFL/HaemR2L with expected size of 523 bp 
with PCR conditions of: 3 min at 94 °C, 35 cycles of 30 s 
at 94  °C, 30  s at 50  °C and 45  s at 72  °C, and 72  °C for 
10 min. Master mix used for all amplifications contains as 
followed: 2uL of gDNA/PCR product, 20 pmol of primer, 
3  mM MgCl2, dNTPs, 1X DreamTaq buffer, DreamTaq 
polymerase, and added with ultra-pure water until 50uL 
per reaction was achieved. Amplicons for both primary 
and secondary amplicons were resolved on 1.5% gel in 
1X TBE buffer with 10ug/mL ethidium bromide (Pro-
mega, USA) excised and sequenced using primer HaemF 
and AE982 through Sanger sequencing (1st Base, Malay-
sia). Sequences that were found to have multiple peaks in 
their chromatographs were subjected thymine-adenine 
cloning (TA cloning), by ligation into pJet2.1 vector and 
transformed into chemically competent Escherichia coli 

DH5α (Thermo Scientific, USA). Five bacterial colo-
nies were randomly picked and sequenced using vector 
primers.

Primary and secondary amplification primers were 
chosen based on its previously proven high sensitiv-
ity rate. Primary amplification using primer set AE974/
AE299 was found to have a sensitivity rate of 81.81% 
for all three avian haemosporidian genera (parasitemia 
intensity as low as 0.62% for Plasmodium; 0.05% for 
Haemoproteus; 0.01% for Leucocytozoon). Whereas, sec-
ondary amplification using primer set AE980/AE982 and 
AE983/AE985 for multiplexing protocol had a sensitiv-
ity rate of 100% and 94.4% respectively with the ability to 
amplify parasitemia as low as 0.01% for both haemospo-
ridian genera [22]. On the other hand, primer set Hae-
mFL/HaemRL2 was able to amplify Leucocytozoon with 
parasitemia as low as 0.001% (equivalent to 1 parasite to 
10,000,000 erythrocytes) through nested PCR [16].

Phylogenetic analysis
Raw sequences were analysed using the Basic Local 
Alignment Search Tool software (BLAST) (https://​blast.​
ncbi.​nlm.​nih.​gov/​Blast.​cgi) and MalAvi (http://​130.​235.​
244.​92/​MalAvi/) [24] to determine parasite genus and 
most similar published lineage respectively. Forward 
and reverse sequences together with its similar matches 
were then aligned for sequence homology identification. 
In the case of differences of one or more single nucleo-
tide polymorphism compared to highest matched line-
ages, sequence was classified as a novel lineage [8, 16]. 
A multiple alignment of homologous sequences and 
related available sequences from GenBank and MalAvi 

Fig. 1  Diagram of mitochondrial genes (COX1 and CytB gene) and binding sites of primer sets used in this study. AE974/AE299 primer sets was 
used for consensus amplification of the three genera. AE980/AE982 and AE983/AE985 primer sets were used for multiplexing PCR for Haemoproteus 
and Plasmodium detection respectively. HaemF/AE982 and HaemFL/HaemR2L primer set was used for genus-specific detection of Haemoproteus 
and Leucocytozoon respectively. Expected amplicon size of each primer sets are indicated below the primer length and italicised. Position of 
nucleotide on mitochondrial gene involved in this study are mentioned below each gene name

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://130.235.244.92/MalAvi/
http://130.235.244.92/MalAvi/
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was executed using Clustal Omega (https://​www.​ebi.​ac.​
uk/​Tools/​msa/​clust​alo/) [36]. Bayesian v3.2.7a using the 
GTR + G + I model as suggested by jModelTest software 
v.2.1.6. Both jModelTest and MrBayes software were run 
in CIPRES Science Gateway [37]. Pairwise distance to 
determine the divergence between positive samples with 
matched lineages were calculated using the Tamura-Nei 
model of substitution, with all substitution weighted 
equally, implemented in MEGA11 [38].

Result
Molecular detection of avian parasites in clotted blood
Of the 29 samples, 14 samples (48.28%) were found posi-
tive for avian Plasmodium through multiplexing, produc-
ing a 580 bp amplicon size (Fig. 2). To reconfirm the zero 
amplification of Haemoproteus through multiplexing, 
Haemoproteus-specific primer set was used. Haemopro-
teus-specific primers amplified 820  bp band to the 14 
samples previously positive for Plasmodium (Fig. 3), sug-
gesting mixed infection. However, nucleotide sequencing 
of excised amplicons revealed the identified as Plasmo-
dium, revising the prevalence of 48.28% haemosporidia 
to be solely made up of Plasmodium lineages only. Of 

the fourteen amplified samples, five were detected posi-
tive by primary PCR indicting high parasitemia in these 
individuals.

The analysis of the sequences from multiplex PCR
The analysis of the primer binding sites of the Plasmo-
dium sequences revealed that 12 of 14 sequences had a 
‘G’ to ‘T’ nucleotide substation at the 3’-end of the reverse 
primer, AE982 (position 1043 bp) (Table 1). Apart from 
that, the remaining two sequences had a ‘T’ nucleotide 
mismatch to the reverse primer AE982, inferring that 
G/T misbinding occurred during PCR. Further trouble-
shooting through gradient PCR with annealing tempera-
ture ranging from 45 °C to 55 °C did not improve binding 
specificity of primer to template.

Phylogenetic analysis
The haemosporidians found in our study were classi-
fied into three clades with medium to high nodal sup-
port ranging (> 0.53) corresponding to the studied 
subgenera in this study. Five lineages were detected 
from 14 positive samples, with two lineages being 
novel. Lineages detected highly matched to pCOLL4 

Fig. 2  Cropped electrophoresis gel image of A. nested-multiplex PCR amplification of the CytB gene of avian Plasmodium and Haemoproteus using 
primer set AE980/AE982 and AE983/AAE985 respectively, producing amplicon of 580 bp only; B. nested PCR amplification of the CytB gene of avian 
Plasmodium using Haemoproteus-specific primer set HaemF/AE982 producing amplicon of 820 bp; C. nested PCR amplification of CytB gene of 
avian Leucocytozoon using primer set HaemFL/HaemR2L producing amplicon of 523 bp. (see Additional files 3, 4, and 5: Figure S2 – S4). Visualisation 
of PCR amplifications for nested-multiplex and nested protocol were done on different gels. The last two lanes on the gel contains the negative 
(water) and positive control for each primer set. Expected band size of amplicons were based on the 100 bp molecular weight ladder, indicated by 
the bold line. Positive and negative interpretations are indicated below each band

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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(P. homocircumflexum; Subgenus: Giovannolaia;n = 1), 
pFANTAIL01 (P. collidatum; Subgenus: Novyella; 
n = 12), pACCBAD01 (Plasmodium sp.; Subgenus Hae-
mamoeba; n = 1) and novel lineages pALPSIS01 and 
pALPSIS02 (Plasmodium sp.; Subgenus: Novyella; n = 1 
respectively) (Fig. 3).

The novel lineages pALPSIS01 and pALPSIS02 were 
found to be monophyletic to pFANTAIL01, with high 
nodal support of 1.0 and pairwise distance of 1.09% with 
difference of one nucleotide at different position propos-
ing the discovered lineages belonging to P. collidatum. 
On the other hand, the undescribed pACCBAD01 lineage 

Fig. 3  Bayesian inference phylogenetic tree of positive samples and lineages with the highest similarity from MalAvi database and GenBank 
using 479 bp sequences of the CytB gene. Nodal support values near branches indicate posterior clade probabilities. Samples matched to P. 
homocircumflexum (GenBank accession: KY653784; pCOLL4), Plasmodium sp. (MF442584; pACCBAD01) and P. collidatum (DQ212193; pFANTAIL01, 
pALPSIS01, pALPSIS02). H. columbae (MN065391) was used as the outgroup in the phylogenetic tree. Bolded in dark blue are lineages that were 
detected in previous studies; bolded in purple are novel lineages detected in this study
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found in this study was found to be monophyletic to P. 
gallinaceum (lineage pGALLUS01), belonging to subge-
nus Haemamoeba with medium nodal support of 0.75 
and genetic distance of 3.37% proposing lineage pAC-
CBAD01 a possible morphospecies of P. gallinaceum.

Discussion
This study investigated the prevalence of haemosporid-
ians in AGS that were succumbed to death by window 
smashing in Sarawak, Malaysian Borneo using multiplex-
ing protocol that was previously reconfirmed by Pacheco 
et al. [22]. Of the 29 carcasses samples, we initially found 
14 samples positive for only Plasmodium genus through 
multiplexing PCR and zero Leucocytozoon. However, 
there was discrepancy in the result after PCR reconfir-
mation was done using Haemoproteus-specific primer 
set which indicated co-infection in positive samples that 
were previously detected Plasmodium-positive. Sanger 
sequencing of amplicons then reconfirmed that haemop-
soridian positive samples harboured Plasmodium only.

The investigation demonstrated that Haemoproteus-
specific primer set produced by Pacheco et  al. may not 
be suitable for rapid genus identification although proven 

to be highly specific through PCR validation from labs in 
USA, Lithuania, and Columbia. Haemoproteus-specific 
primer set HaemF/AE982 is made up of primer HaemF, 
which was previously designed and used in detection of 
both Haemoproteus and Plasmodium by Bensch et  al. 
[39], whereas, AE982 primer set was designed to amplify 
Haemoproteus-only species and used in both multi-
plexing and genus-specific PCR detection. With this 
information, we can deduce that AE982 reverse primer 
determines the genus-specificity of the primer. How-
ever, we found that chosen binding site for Haemoproteus 
primer compliments Plasmodium as well. This may have 
been overlooked during primer design as lineages from 
biodiversity hotspot regions with high haemosporidian 
diversity and genetic plasticity still remains unexplored 
[22, 40, 41], taking Borneo as an example. Besides, fre-
quently used primer set HaemF/HaemR2 only produces 
amplicon size of around 479 bp. This limits the submis-
sion of longer sequences in public depository domains 
such as GenBank and MalAvi, making longer reference 
sequences to improve primer design of genus-specific 
primers scarce. Apart from that, mismatch of ‘G’ to 
two of our positive samples containing ‘T’ nucleotide at 

Table 1  Binding site of the last 10 nucleotides of reverse primer, AE982 to positive samples and sequences with highest similarity 
percentage. First row of the table represents the position of the nucleotide on the CytB gene. Two samples were observed with G/T 
misbinding on the 3’-end of reverse primers post sequencing whereas twelve samples were observed to have exact sequence with 
Haemoproteus-specific primer. Possible insertion or deletion at binding site were reconfirmed by sequencing visible amplicons of 
1773  bp size under UV light from the first round consensus PCR. Highlighted yellow: AE982 reverse primer sequence from 5’-end; 
Highlighted blue: sequence at primer binding site of positive samples; Highlighted green: sequence at primer binding site of reference 
with highest match; Highlighted orange: mismatch nucleotides to primer sequence. Dots ‘⋅’ represents similar nucleotide with primer 
nucleotide

Position at CytB gene 5’ 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 3’

Reverse primer AE982 (Haemoproteus) A T R W A R A T A G
OP321162 pFANTAIL01_BP_26 ・ ・ G T ・ G ・ ・ ・ T
OP321157 pALPSIS01_BP_29_C6 ・ ・ A T ・ G ・ ・ ・ T
OP321166 pFANTAIL01_BP_22 ・ ・ G T ・ G ・ ・ ・ ・
OP321165 pFANTAIL01_BP_16 ・ ・ G T ・ G ・ ・ ・ ・
OP321168 pFANTAIL01_BP_28 ・ ・ G T ・ G ・ ・ ・ ・
OP321167 pFANTAIL01_BP_27 ・ ・ G T ・ G ・ ・ ・ ・
OP321159 pFANTAIL01_BP_8 ・ ・ G T ・ G ・ ・ ・ ・
OP321163 pFANTAIL01_BP_19 ・ ・ G T ・ G ・ ・ ・ ・
OP321158 pALPSIS02_BP_4_C7 ・ ・ G A ・ G ・ ・ ・ ・
OP321155 pFANTAIL01_BP_24 ・ ・ G T ・ G ・ ・ ・ ・
OP321156 pFANTAIL01_BP_15 ・ ・ G T ・ G ・ ・ ・ ・
OP321164 pFANTAIL01_BP_21 ・ ・ G T ・ G ・ ・ ・ ・
OP321160 pCOLL4_BP_3 ・ ・ G T ・ G ・ ・ ・ ・
OP321161 pACCBAD01-BP_83 ・ ・ G T ・ G ・ ・ ・ ・
MF442548 Plasmodium_MDG_P12 ・ ・ G T ・ G ・ ・ ・ T
GQ395660 Plasmodium_LA20TRMB ・ ・ G T ・ A ・ ・ ・ T
KY653751 Plasmodium_OHA1 ・ ・ G T ・ A ・ ・ ・ T
KJ499987 H. macrovacuolatus ・ ・ G T ・ A ・ ・ ・ ・
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position 1043 bp of the 3’-end of the primer may indicate 
that one SNP may not be sufficient to increase specificity 
of primer set.

On the other hand, multiplexing PCR protocol using 
primer set AE980/AE982 for Haemoproteus and AE983/
AE985 for Plasmodium detection produced expected 
amplicon size of 580  bp, detecting Plasmodium only in 
our samples. In the primer set used for multiplexing, we 
observed that forward primers AE980 and AE983 were 
responsible for producing the differentiable band size of 
346 bp and 580 bp as reverse primers AE982 and AE985 
have similar binding site at position 1042 bp and 1043 bp 
of the CytB gene respectively. Thus, multiple bands can 
still be observed from samples with mixed Haemopro-
teus and Plasmodium infection despite the possibility of 
reverse primer AE982 cross-annealing to Plasmodium 
species when using the multiplexing protocol as found in 
our study.

Our findings are in agreement to other haemosporid-
ian detection studies in species of the Sturnidae family in 
Australia, India and Myanmar, detecting high prevalence 
of Plasmodium [42–44], but these studies also detected 
the presence of Haemoproteus and Leucocytozoon. The 
lack of their presence in our study can be attributed to 
the availability of biting vectors in urban setting, which 
also contributes to the dominance of one haemosporid-
ian genera over the other. Mosquitoes (Culicidae), bit-
ing midges (Culicoides) and black flies (Simuliidae) are 
biting vectors for avian Plasmodium, Haemoproteus and 
Leucocytozoon respectively. Haemoproteus and Leucocy-
tozoon in natural habitats tends to be higher compared 
to in urban areas [45, 46] as their vectors require sta-
ble environment such as soil–water interface and con-
stant running water respectively for breeding grounds 
[47]. Whereas, Culicidae mosquitoes are able to thrive 
in urbanised environments, requiring small temporary 
water bodies which allows proliferation of their numbers 
and increasing numbers of Plasmodium vectors [48]. 
Secondly, Plasmodium dominance can be caused by the 
strong specificity of parasite to their vertebrate host [41] 
unlike Haemoproteus and Leucocytozoon which has been 
observed to be host-specific unlike its host-generalist 
Plasmodium [13, 43, 49]. Therefore, the absence of non-
Plasmodium genera in our study may be attributed by the 
lack of AGS-specific haemosporidian and biting vectors 
in Sarawak.

From the 14 Plasmodium positive samples, five lineages 
were detected in this study with two recorded as novel 
lineages. Firstly, pACCABD01 is an undescribed host-
generalist Plasmodium lineage first detected in Accipter 
badius and Halliastur indus (GenBank accession no.: 
JN639001; MZ502250) from Thailand [50]. Based on our 

phylogenetic tree (Fig.  3), we found that pACCBAD01 
belongs to subgenus Haemamoeba, a morphospecies 
to P. gallinaceum lineage, GALLUS01 which is typically 
associated with reduced quality and quantity production 
of poultry meat and eggs and fatal to its host with mor-
tality rate between 80%—90% in its host [51, 52].

On the other hand, the remaining two lineages are, 
P. collidatum pFANTAIL01 and P. homocircumflexum 
pCOLL4 which has been described as host-generalist 
pathogenic parasite lineage. Susceptible hosts includ-
ing birds from the Sturnidae family have been shown to 
develop high parasitemia when infected with the men-
tioned lineages [24, 44, 53–55]. Experimentally infection 
of pFANTAIL01 presented development of exo-erythro-
cytic stages in the kidney, liver, spleen, and lungs of host 
[55]. Whereas additional histology of the brain in experi-
mental host infected with pCOLL4 exhibited phanerozo-
ites blockage in the brain capillaries suggesting cerebral 
ischaemia as the main cause of mortality [54]. However, 
it is unknown as to the possibility of phanerozoites devel-
oping in the brain from the P. collidatum lineage pFAN-
TAIL01 lineage as it has not been reported.

Juvenile AGS succumbed to death by window colli-
sion has been observed as a common occurrence due 
to it nescience of flying behaviours in urban areas dur-
ing foraging periods [56, 57]. However, a recent study 
in Switzerland found developing phanerozoites in the 
ocular structure of infected fieldfare, Turdis pilaris with 
P. matutinum (pLINN1) which was succumbed to death 
due to collision with a slow-moving vehicle [58]. This 
suggests the possibility of visual impairments as well in 
our AGS apart from developing learned behaviour. How-
ever, this is still unknown as previous exo-erythrocytic 
haemosporidian life cycle studies in both naturally and 
experimentally haemosporidian rarely includes histology 
of the eye. Future studies should include other organs for 
histological observation apart from the internal organs 
and pectoral muscle to further understand the develop-
ment of exo-erythrocytic stages of avian Plasmodium in 
infected host.

With the high prevalence of parasite found this study, 
carcasses may be good sample source to understand 
the diversity of pathogenic haemosporidia in naturally 
infected host. An Austrian study employed a citizen-
scientist approach by collecting carcasses for malarial 
detection, and demonstrated carcasses as good sample 
source for the study [59]. However, decomposition state 
of the carcasses affected the prevalence reported. Thus, 
this should be taken into consideration to avoid potential 
degradation of genetic material, imposing false negative 
through PCR. Next, apart from muscle tissue and blood 
drops from carcasses [58, 59], blood clot can also be used 
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for extraction of avian haemospordia gDNA. Our proto-
col did not require the addition of glass beads for further 
disruption, yielding similar results to de Abreu and col-
leagues [60] except that the protocol was used to detect 
presence of Plasmodium species infecting non-human 
primate from blood clot samples.

As sample size of the study was highly dependent on 
the juvenile AGS that were succumbed to death during 
fruiting season (October – December), a small number 
of birds were obtained to conduct this study. Due to the 
limitation, inclusion of trapping methods such as mist 
net during non-fruiting months should be considered in 
future studies to understand the diversity and changes 
in haemosporidian epidemiology in AGS in Sarawak. 
With the knowledge of misbinding of Haemoproteus-
specific primers to Plasmodium genus obtained in this 
study, designing new specific primers should be taken 
into consideration with priority of including sequences 
from regions with high biodiversity during primer design 
stage. However, other multiplexing primers such as those 
designed by Ciloglu and colleagues [21, 61] can also be 
considered as an alternative. Although sequences as 
long as 820 bp were obtained in this study, the specific-
ity of primer to our haemosporidians for the alternative 
multiplexing primers could not be evaluated due to the 
non-overlapping binding site of the Ciloglu primers and 
primers used in this study.

Conclusion
This is the first blood parasite detection study on Asian 
Glossy Starling using carcasses as sample source in 
Sarawak. The complete reliance on genus-specific proto-
col to identify and differentiate haemosporidia in avian 
species is not possible at this moment due to the rich 
nucleotide diversity in avian malaria. A situation made 
worse with the paucity of sequence data in many regions 
in the world. However, we demonstrated that HaemF/
AE982 can still be used to obtain longer sequences for 
phylogenetic analysis study. It is recommended that even 
when using primer set with proven high sensitivity and 
specificity rate, protocol validation via sequencing should 
be included to avoid misinterpretation of the prevalence.
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