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Abstract 

Background  IFN-γ is a pleiotropic cytokine that has been shown to affect multiple cellular functions of bovine 
mammary epithelial cells (BMECs) including impaired milk fat synthesis and induction of malignant transformation via 
depletion of arginine, one of host conditionally essential amino acids. But the molecular mechanisms of these IFN-γ 
induced phenotypes are still unknown.

Methods  BMECs were treated with IFN-γ for 6 h, 12 h, and 24 h. The metabolomic profiling in BMECs upon IFN-γ 
induction were assessed using untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) 
metabolomic analysis. Key differentially expressed metabolites (DEMs) were quantified by targeted metabolomics.

Results  IFN-γ induction resulted in significant differences in the contents of metabolites. Untargeted analysis identi-
fied 221 significantly DEMs, most of which are lipids and lipid-like molecules, organic acids and derivatives, organ 
heterocyclic compounds and benzenoids. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis, DEMs were enriched in fructose and mannose metabolism, phosphotransferase system (PTS), β-alanine 
metabolism, arginine and proline metabolism, methane metabolism, phenylalanine metabolism, and glycolysis/glu-
coneogenesis. Quantification of selected key DEMs by targeted metabolomics showed significantly decreased levels 
of D-(-)-mannitol, argininosuccinate, and phenylacetylglycine (PAG), while increased levels in S-hydroxymethylglu-
tathione (S-HMG) and 2,3-bisphospho-D-glyceric acid (2,3-BPG).

Conclusions  These results provide insights into the metabolic alterations in BMECs upon IFN-γ induction and indi-
cate potential theoretical basis for clarifying IFN-γ-induced diseases in mammary gland.
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Introduction
Arginine is a conditional essential amino acid depending 
on the growth stage and body condition. For young mam-
mals, arginine is one of the essential amino acids because 
of its low content in the breast milk and insufficient argi-
nine synthesis [1]. On the other hand, endogenous syn-
thesis of arginine can meet the demand of body’s basal 
metabolism which makes it is a non-essential amino acid 
for adults. As the most abundant nitrogen carrier in pro-
teins, arginine is the substrate for the synthesis of multi-
ple substances including proteins, urea, ornithine, nitric 
oxide (NO), creatine, polyamines, nucleotides, proline, 
and agmatine [2, 3]. Thus, arginine plays vital roles in 
many biologic processes, including nutrients metabolism, 
cell growth and proliferation, release of hormone, and 
immune responses [4, 5].

In pathological conditions, cells under various stress 
factors are accompanied by abnormal arginine metabo-
lism, resulting in significant reduction of intracellular 
arginine or arginine depletion. Many studies have found 
that arginine depletion is closely associated with the 
development of many diseases, such as cancer and infec-
tion [6, 7]. Arginine is required for tumor cell growth 
and actually, many tumor types including human breast 
cancer are arginine auxotrophic [8, 9], which makes argi-
nine depletion an efficient therapeutic strategy for auxo-
trophic cancer treatment. However, a study by Cao et al. 
demonstrates that arginine supplementation inhibits the 
growth of breast cancer cells by enhancing innate and 
adaptive immune responses that are mediated by mye-
loid-derived suppressor cells in vivo [10]. Moreover, argi-
nine also contributes to host immune defense in response 
to pathogenic infections. Arginine supplementation 
reduces the inflammatory response and susceptibility to 
Staphylococcus aureus (S. aureus) of bovine mammary 
epithelial cells (BMECs) and protects host from mastitis 
in vivo [11].

The influencing factors and mechanism of arginine 
depletion are poorly studied. Interestingly, arginine 
metabolism is influenced by IFN-γ, a pleiotropic inflam-
matory cytokine which usually involves in inflamma-
tion and autoimmune diseases [12, 13]. It’s found that 
the level of IFN-γ was closely associated with arginine 
depletion, suggesting IFN-γ possibly disorders arginine 
metabolism and leads to occurrence of diseases. Mice 
fed gluten-containing standard diet shows elevated IFN-γ 
level which may contribute to the higher type 1 diabetes 
incidence [14]. Arginine depletion reduces the expression 
of natural killer (NK) cell receptors and intracellular pro-
duction of IFN-γ, which hinder NK cell functions [15]. 
Studies from our group demonstrate that IFN-γ induces 
arginine depletion that increase susceptibility to S. aureus 
and mastitis occurrence, impairs milk fat and protein 

synthesis, and malignant transformation of bovine mam-
mary epithelial cells (BMECs) [11, 16, 17]. These results 
suggest that the regulation of arginine by IFN-γ might be 
therapeutic targets of some diseases. However, the exact 
mechanism for IFN-γ-induced arginine depletion of cells 
including BMECs is still unknown.

Metabolomics is a widely used tool to analyze the 
changes of various small molecule metabolites in system-
atic and molecular biology [18, 19]. Using high-through-
put in silico analysis of metabolomics data, characteristic 
differentially expressed metabolites (DEMs) which reflect 
the functional status of living organisms can be identi-
fied without discrimination [20]. In this study, an untar-
geted and targeted metabolomics approach involving 
ultra-performance liquid chromatography-mass spec-
trometry (UPLC-MS) was applied to explore the mecha-
nism underlying how IFN-γ induces arginine depletion 
of BMECs. All DEMs upon IFN-γ induction were iden-
tified and enriched by Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis [21–23]. Our 
study not only contributes to better understanding the 
arginine metabolism of BMECs, but also provides a 
molecular basis for the occurrence and prevention of dis-
eases associated with IFN-γ-induced abnormal arginine 
metabolism.

Materials and methods
Chemicals and reagents
Bovine IFN-γ was purchased from the Kingfisher Bio-
tech (S. Paul, MN, USA). LC–MS grade methanol and 
formic acid (98%) were bought from Sigma-Aldrich (St. 
Louis, MO, USA); acetonitrile was bought from Thermo 
(Shanghai, China). Ultrapure water was obtained with a 
Milli-Q system (Millipore Co., MA, USA). All chemicals 
and solvents used were of analytical or HPLC grade.

Sample preparation for untargeted metabolic analysis
The BMECs cell line, MAC-T [24] (provided by Prof. 
Guoqiang Zhu, Yangzhou University, Yangzhou, China), 
was used in this study. All the cells were grown in Dul-
becco’s modified Eagle’s medium/nutrient mixture 
F-12 (DMEM/F12) with 10% fetal bovine serum (FBS, 
CLARK, China), with 100 U/mL penicillin, 100  mg/mL 
streptomycin and incubated at 37  °C in a humidified 
atmosphere with 5% CO2. When entered the logarith-
mic growth phase, the cells were digested using 0.25% 
trypsin. For untargeted metabolomics detection, cells 
were treated with IFN-γ for different time periods 6  h, 
12 h, and 24 h. After trypsin digestion and centrifugation 
at 1000  rpm for 10  min, the cell pellets were harvested 
and re-suspended in 1  mL pre-cooled PBS, followed by 
addition of 5 mL pre-cooled quenching reagent (8.6 g/L 
NH4HCO3 pH = 7.4, 60% ethanol), mixed evenly and 
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centrifuged at 6000 g for 15 min at 4 °C. The cell pellets 
were re-suspended in 2  mL ultra-pure water and were 
sonicated in an ice bath for 10 min (5 s sonication with 
5 s interval). The protein precipitation reagent (methanol: 
acetonitrile: water = 2: 2: 1, v/v/v) was added, mixed uni-
formly and centrifuged at 13,000 g, 4 °C for 15 min. The 
supernatant was collected for further analysis.

Quality control (QC) sample preparation for untargeted 
metabolic analysis
Quality control samples (QC) were prepared by taking 
out same amount (50 μL) of volume from each group of 
samples. A total of 200 μL of each sample were dried and 
concentrated on a nitrogen blower at 37 °C, and dissolved 
in 50 μL of protein precipitation reagent in ampoules for 
further test.

Sample detection by UPLC‑MS for untargeted metabolic 
analysis
Liquid chromatography was performed with ExionL 
CAD UPLC equipped with a TripleTOF 5600 MS sys-
tem. The samples were separated by an ACQUITY 
UPLC HSS T3 column (2.1 × 100 mm, 1.8 µm) at 35 °C, 
the injection volume was 5.0 μL. Mobile phase A: 0.1% 
formic acid; mobile phase B: 95% acetonitrile. Samples 
elution was performed at a flow rate of 0.35  mL/min. 
Gradient elution procedure was as follows: 0  -  0.5  min, 
2% B; 0.5 -1.5 min, 2% - 20% B; 1.5 - 4.0 min, 20% - 65% 
B; 4.0 - 11.0 min, 65% - 95% B; 11.0 min - 15.0 min, 95% 
B; 15.0 min - 15.1 min, 95% - 2% B; 15.1 min - 20.0 min, 
2% B. Samples were detected by electrospray ion source 
in both positive and negative ion modes. Samples 
were scanned with following parameters: DP = 100  V, 
CE = 35  eV, 100  -  1000  Da, curtain gas (CUR) = 30 psi, 
atomizing gas (GS1) = 55 psi, heating gas (GS2) = 55 
psi, ion spray voltage (ISVF) = 5500  V, ion source 
temperature = 550 °C.

Sample preparation for targeted metabolic analysis
Sample preparation for targeted metabolomics was per-
formed as previously reported [25]. Reagents and mate-
rials for targeted metabolomics analysis are the same as 
those for nontargeted metabolomics. Briefly, the metabo-
lite standards and the internal standards were dissolved 
with 90% acetonitrile to a final concentration of 5  mg/
mL and 1  mg/mL, respectively. 50 μL samples were 
mixed with 50 μL internal standard working solution, 
50 μL ethyl water (acetonitrile: water = 1:1, v/v), and 350 
μL acetonitrile containing 1% formic acid. The mixture 
was vortex-mixed and centrifuged for 10  min at 4  °C, 

12,000  rpm. The supernatant was collected for further 
analysis by UPLC-MS.

Sample detection by UPLC‑MS for targeted metabolic 
analysis
Liquid chromatography was performed with ExionL 
CAD UPLC equipped with a TripleTOF 5600 MS system. 
The samples were separated by a ZORBAX Eclipse XDB-
C8 column (4.6 × 150 mm, 5 μm) at 30 °C, the injection 
volume was 15.0 μL. Mobile phase A: 0.1% formic acid; 
mobile phase B: 95% acetonitrile. Samples elution was 
performed at a flow rate of 0.2 mL/min. Gradient elution 
procedure is as follows: 0 - 2.5 min, 2% B; 2.5 - 4.0 min, 
2% - 50% B; 4.0 - 6.0 min, 50% B; 6.0 - 6.1 min, 50% - 5% 
B; 6.1 min - 9.9 min, 5% B; 9.9 min - 10.0 min, 2% B. Sam-
ples were detected by electrospray ion source in positive 
ion mode. Samples were scanned with following param-
eters: DP = 60  V, CE = 10  eV, 50  -  250  Da, curtain gas 
(CUR) = 30 psi, atomizing gas (GS1) = 50 psi, heating 
gas (GS2) = 50 psi, ion spray voltage (ISVF) = 5500 V, ion 
source temperature = 500 °C.

Data processing and analysis
The MS raw data were analyzed by Progenesis QI 2.3 
software (Nonlinear Dynamics, WatersCorp, Durham, 
USA). Data of different samples were aligned according 
to the retention time deviation of 0.2 min and the mass 
deviation of 5 ppm, and analyzed according to the coeffi-
cient of variation (CV) value of 30%, signal-to-noise ratio 
of 3, minimum signal strength of 100,000. The signifi-
cant differences of metabolites were verified by variable 
weight value (VIP) > 1.0, fold change (FC) > 2.0 or FC < 0.5 
and p < 0.05. Experimental data were statistically analyzed 
by GraphPad (version 9.0). Data were presented as the 
mean ± standard deviation (SD) from three independ-
ent replicates. The differences between the mean values 
of normally distributed data were assessed by one-way 
ANOVA (Dunnett’s test). p < 0.05 was considered as sta-
tistically significant, which was indicated by "*". p < 0.01 
indicated that the difference was extremely significant, 
which was indicated by "**".

Results
Detection of metabolites
To evaluate the metabolic alternations induced by IFN-γ 
in BMECs, we detected the metabolites in samples of 
IFN-γ treatment group and control group at different 
time (6  h, 12  h and 24  h) by untargeted metabolomics 
analysis in both negative and positive ion modes. Vali-
dation of the analytical method was achieved using 
quality control (QC) samples. The correlation heat 
map showed that the correlation coefficient among QC 
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Fig. 1  Multivariate statistical analysis of samples in positive and negative ion modes. Principal components analysis (PCA) in negative (a) and 
positive (b) ion modes; orthogonal partial least-squares discriminant analysis (OPLS-DA) score chart in negative (c, e, g) and positive (d, f, g) ion 
modes. Figure c, e, and g: control cells incubated for 6 h, 12 h, and 24 h, respectively; d, f, and h: cells stimulated with IFN-γ for 6 h, 12 h, and 24 h, 
respectively. (-), negative ion mode. ( +), positive ion mode. QC, quality control
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samples in both ionization modes was almost 1.0 (from 
0.983 to 1.000) (Fig. S1), which indicates that the detec-
tion method has good stability and reproducibility of QC 
samples. According to the qualitative metabolite results, 
a total of 4,762 substance peaks (including 2,543 negative 
ion peaks and 2,219 positive ion peaks) in samples were 
detected. Furthermore, 2,253 annotated metabolites, 
including 976 negative ion mode metabolites and 1,277 
positive ion mode metabolites, were identified.

Multivariate data analysis
Next, unsupervised principal component analysis (PCA) 
and orthogonal partial least squares discriminant analy-
sis (OPLS-DA) was utilized to discriminate the overall 
distribution among samples. In the negative ion mode, 
the first and second principal components (PCA1 and 
PCA2) accounted for 81.34% and 5.07% of the total vari-
ance, respectively. While in the positive ion mode, the 
first and second principal components (PCA1 and PCA2) 
accounted for 81.17% and 4.37% of the total variance, 
respectively. The PCA showed clear differences among 
the groups in both ion modes, especially before and after 
IFN-γ induction (Fig. 1a and b). As time grows, the differ-
ences among control groups and IFN-γ induction groups, 
and the differences between control group and IFN-γ 
induction group gradually expanded, indicating there 
may have been significant differences in the expression of 
metabolites upon IFN-γ induction in BMECs. Similarly, 
the OPLS-DA model also displayed clear segmentation 
between the two groups in both ion modes (Fig.  1c-h). 
The permutation test of the OPLS-DA model showed 
that the interpretation rate (R2Y(CUM)) for the sample 
was close to 1 and the predictive ability (Q2(CUM)) was 
greater than 0.47 (Fig. S2), indicating that the model was 
reliable and can better explain and predict the differences 
in samples among the groups.

Identification of differentially expressed metabolites
To further identify the differentially expressed metabo-
lites (DEMs) in the samples, we screened the metabo-
lites using variable importance projection (VIP) > 1, fold 
change (FC) > 2.0 or FC < 0.5 and p-value < 0.05 in the 
OPLS-DA model. After data acquisition and analyza-
tion, a total of 108 and 113 DEMs were screened out in 
negative and positive ion modes, respectively (Table S1). 
Compared to control, there were 11 significantly DEMs 
(1 upregulated, 10 downregulated) upon IFN-γ treatment 

for 6 h (Table S2; Fig. 2a); 14 significantly DEMs (3 upreg-
ulated, 11 downregulated) upon IFN-γ treatment for 12 h 
(Table S3; Fig. 2b); and 25 significantly DEMs (14 upregu-
lated, 11 downregulated) upon IFN-γ treatment for 24 h 
(Table S4; Fig. 2c). Compared to IFN-γ treatment for 6 h 
group, there were 27 significantly DEMs (11 upregulated, 
16 downregulated) upon IFN-γ treatment for 12 h (Table 
S5; Fig.  2d); 86 significantly DEMs (37 upregulated, 49 
downregulated) upon IFN-γ treatment for 24 h (Table S6; 
Fig.  2e). Compared to IFN-γ treatment for 12  h group, 
there were 58 significantly DEMs (13 upregulated, 45 
downregulated) upon IFN-γ treatment for 24 h (Table S7; 
Fig.  2f ). The volcano plots between each comparison 
group displayed the DEMs that contributed to the sample 
separation (Fig.  2a-f ). Subsequently, we applied hierar-
chical clustering analysis and found that DEMs were dis-
tinguishable in the heat map (Fig. 3a and b). According to 
the Human Metabolome Database (HMDB), the majority 
of different metabolites were lipids and lipid-like mol-
ecules; organic acids and derivatives; organ heterocyclic 
compounds; benzenoids; phenylpropanoids and polyke-
tides; and organic oxygen compounds (Fig. 4a). Further-
more, the majority of identified lipids belong to fatty acid 
conjugates, fatty amides, glycerophosphocholines, glyc-
erophosphoethanolamines, and fatty esters according to 
the LIPID MAPS Structure Database (LMSD) classifica-
tion (Fig. 4b).

KEGG pathway enrichment analysis
Subsequently, we analyzed the different metabolic path-
ways enrichment using the KEGG database [21–23]. The 
results showed that the DEMs were enriched in 141 and 
115 KEGG metabolic pathways in negative and positive 
ion modes, respectively. The different metabolic clas-
sifications upon IFN-γ treatment are mainly enriched 
in category metabolism including lipid metabolism, 
amino acid metabolism, chemical structure transforma-
tion maps, nucleotide metabolism, and metabolism of 
cofactors and vitamins; organismal systems including 
digestive system; human diseases including cancer; envi-
ronmental information processing including membrane 
transport (Fig.  5a). We then analyzed the top pathways 
with significant KEGG enrichment in both ion modes. 
Interestingly, many of the DEMs are not annotated in 
KEGG database. Specifically, the pathways of DEMs in 
IFN-γ treatment for 12  h group were mainly concen-
trated in fructose and mannose metabolism (00051, 

(See figure on next page.)
Fig. 2  Volcano plots for the differentially expressed metabolites (DEMs) in negative and positive ion modes. (a) control (6 h) versus IFN-γ 
stimulation (6 h); (b) control (12 h) versus IFN-γ stimulation (12 h); (c) control (24 h) versus IFN-γ stimulation (24 h); (d) IFN-γ stimulation (12 h) 
versus IFN-γ stimulation (6 h); (e) IFN-γ stimulation (24 h) versus IFN-γ stimulation (12 h); (f) IFN-γ stimulation (24 h) versus IFN-γ stimulation (6 h). 
Downregulated or upregulated genes were divided by |log2Ratio|≥ 1 with false discovery rate (FDR) ≤ 0.01. Red dots for upregulated genes and 
dark blue dots for downregulated genes. vs, versus. (-), negative ion mode. ( +), positive ion mode



Page 6 of 12Li et al. BMC Veterinary Research           (2023) 19:44 

Fig. 2  (See legend on previous page.)
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Fig. S3), phosphotransferase system (PTS) (02060, Fig. 
S4), β-alanine metabolism (00410, Fig. S5), arginine and 
proline metabolism (00330, Fig. S6), compared to con-
trol group; while that in IFN-γ treatment for 24 h group 
were only methane metabolism (00680, Fig. S7) (Fig. 5b). 
The pathways of the DEMs in IFN-γ treatment 24 h and 
12  h groups were mainly concentrated in phenylalanine 
metabolism (00360, Fig. S8), while those of the DEMs in 
IFN-γ treatment 24 h and 6 h groups were mainly con-
centrated in glycolysis/gluconeogenesis (00010, Fig. S9) 
(Fig. 5b). Overall, these results demonstrated that IFN-γ 
treatment led to significant metabolic changes, especially 
lipid and amino acid metabolism in BMECs.

Analysis of the DEMs in enriched pathways
To further analyze the DEMs enriched by KEGG classifi-
cation, the contents of DEMs in significant altered path-
ways of each group were evaluated by enriched analysis 
and targeted metabolomics. All the significantly altered 
pathways comprised only one metabolite each (Fig.  6). 
Specifically, the content of D-(-)-Mannitol, in both the 
fructose and mannose metabolism (00051, Fig. S3) and 

phosphotransferase system (PTS) (02060, Fig. S4) path-
ways, was significantly decreased upon IFN-γ treatment 
for 24 h compared with control in MAC-T cells (Fig. 6A).

On the other hand, the content of spermine, in both 
the β-alanine metabolism (00410, Fig. S5) and arginine 
and proline metabolism (00330, Fig. S6) pathways, was 
significantly increased upon IFN-γ treatment for 12  h 
compared with control in MAC-T cells (Fig.  6A, Fig. 
S7). Previously we have shown that IFN-γ treatment did 
not affect ornithine level, but led to reduced intracellu-
lar levels of arginine and citrulline (Fig. S7), two of which 
are the key metabolites for arginine metabolism [25]. As 
a vital intermediate product for arginine synthesis, we 
further detected the intracellular level of argininosucci-
nate in this study. We found that the intracellular level of 
argininosuccinate was significantly reduced upon IFN-γ 
treatment (Fig. 6B), suggesting IFN-γ interferes with argi-
nine synthesis by downregulation of argininosuccinate 
production in MAC-T cells.

Similarly, the content of S-hydroxymethylglutathione 
(S-HMG) and 2,3-bisphospho-D-glyceric acid (2,3-BPG), 
in methane metabolism (00680, Fig. S8) and glycolysis/

Fig. 3  Heatmap of the differentially expressed metabolites (DEMs) in negative (a) and positive (b) ion modes. DEGs were screened out according to 
|log2Ratio|≥ 1 with false discovery rate (FDR) ≤ 0.01. Red rectangles indicate upregulated metabolites and blue rectangles indicate downregulated 
metabolites. (-), negative ion mode. ( +), positive ion mode
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gluconeogenesis (00010, Fig. S10) pathway, respectively, 
was also significantly increased upon IFN-γ treatment 
for 24 h (Fig. 6C and D). Lastly, the content of phenyla-
cetylglycine (PAG) in phenylalanine metabolism (00360, 
Fig. S9) pathway was significantly decreased upon IFN-γ 
treatment for 24  h compared with IFN-γ treatment for 
12 h (Fig. 6E).

Discussion
In this study, untargeted and targeted metabolomics were 
performed using UPLC-TOF/MS to explore the mecha-
nism for IFN-γ induced arginine depletion in BMECs. 
Results showed that IFN-γ induction resulted in signifi-
cant differences in the contents of metabolites. KEGG 
pathway analysis demonstrated that most of the altered 
pathways were those associated with fructose and man-
nose metabolism, phosphotransferase system (PTS), 
β-alanine metabolism, arginine and proline metabolism, 
methane metabolism, phenylalanine metabolism, and 
glycolysis/gluconeogenesis.

Fructose and mannose metabolism are one of the most 
altered pathways in BMECs upon IFN-γ induction. We 
found that the content of D-(-)-Mannitol, a metabolite 
involves in both fructose and mannose metabolism and 
PTS, was significantly decreased (Fig. 6A; Fig. S3). Man-
nitol is widespread in both eukaryotic and prokaryotic 
life as a sugar or sugar alcohol. In clinical settings, man-
nitol has been utilized as a highly effective dehydrating 
agent and osmotic diuretic that contributes to minimize 
the risk of acute renal failure in patients after renal trans-
plantation [26]. It facilitates excretion of water and toxic 
materials of tubular epithelial cells. Mannitol is also 
indicated as add-on maintenance therapy for improving 
pulmonary function in cystic fibrosis patients [27]. It is 
hypothesized that mannitol produces an osmotic gradi-
ent across the airway epithelium that draws fluid into the 
extracellular space and alters the properties of the air-
way surface mucus layer, which allows easier mucociliary 
clearance [27]. Previous results from our group demon-
strated that IFN-γ induced malignant transformation of 
BMECs [16, 28], a precancerous phenotype with drastic 
cell morphology and function alternations. We assume 
that the downregulation of mannitol induced by IFN-γ 
might alters osmosis of BMECs, which leads to accumu-
lation of toxic materials that interfere with cell normal 
functionality.

Fig. 4  HMDB (a) and LMSD (b) classifications of the different 
metabolites of BMECs upon IFN-γ treatment. The Y-axis indicates the 
HMDB/LMSD terms. The number and degree of enrichment of genes 
in a category is displayed in the X-axis. The p-value < 0.05 is defined 
significant. (-), negative ion mode. ( +), positive ion mode. Color 
code: cyan, control group; red, IFN-γ treatment group
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Fig. 5  KEGG pathway enrichment analysis [21–23] based on differentially expressed metabolites (DEMs) upon IFN-γ treatment. (a) The KEGG 
classifications of the DEMs. The Y-axis indicates the KEGG terms. The number and degree of enrichment of pathways in a category is displayed in the 
X-axis. (b) The main enriched KEGG pathways of the DEMs. Red dotted lines indicate p-value = 0.05, which is defined as significant. (-), negative ion 
mode. ( +), positive ion mode
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Spermine is one of the metabolites involve in both the 
β-alanine metabolism and arginine and proline metabo-
lism pathways (Fig.  6B; Fig. S5, S6). Spermine belongs 
to polyamines and it is synthesized from arginine and 
s-adenosylmethionine [29]. It is involved in diverse func-
tions including cell growth and differentiation in terms of 
DNA synthesis and stability, regulation of transcription, 
ion channel regulation, and protein phosphorylation [29, 
30]. Notably, spermine enhances cell growth and thus the 
biosynthesis spermine is upregulated in cancer cells [31]. 
In BMECs, IFN-γ accelerates cell growth and induces 
malignant transformation through arginine depletion 
[16, 28]. It’s been shown that IFN-γ could disturb argi-
nine metabolism by affecting the expression of key time-
limiting enzymes ASS1 [25, 32]. In this study, the content 
of spermine was downregulated, which further confirms 
these results and suggest that the IFN-γ-induced malig-
nant transformation of BMECs might possibly be associ-
ated with increased spermine levels in cells.

S-hydroxymethylglutathione (S-HMG) is the spon-
taneous adduct of formaldehyde and glutathione. It is 
oxidized by S-nitrosoglutathione reductase (GSNOR) 
to S-formylglutathione (FGSH) in cells [33]. It’s been 
shown that GSNOR plays an important regulatory 
role in smooth muscle relaxation, immune function, 

inflammation, neuronal development, and cancer pro-
gression [33]. In addition, GSNOR also modulates 
the availability of intracellular reactive nitric oxide, a 
molecule which functions in inflammation and can-
cer immunity [34]. Of note, S-HMG plays a vital role in 
the detoxication of formaldehyde [35]. In this study, the 
level of S-HMG was significantly increased upon IFN-γ 
induction (Fig.  6C), indicating a possible accumulation 
of formaldehyde in BMECs upon IFN-γ induction that 
might be associated with the malignant transforma-
tion of BMECs. However, whether S-HMG affects argi-
nine metabolism or vice versa stills need to be further 
demonstrated.

2,3-bisphospho-D-glyceric acid (ENO1) is one of the 
metabolites in glycolysis/gluconeogenesis pathway (Fig. 
S10). It is a glycolytic enzyme that catalyzes the conver-
sion of 2-phosphoglyceric acid to phosphoenolpyruvic 
acid during glycolysis [36]. Glycolysis/gluconeogenesis 
plays vital roles in tumorigenesis where ENO1 involves 
in. It has been shown that ENO1 expression was 
enhanced in many tumor cells [37]. ENO1 contributes to 
tumorigenesis by promotion of tumor proliferation, inhi-
bition of cancer cell apoptosis, invasion and metastasis 
of tumor cells [36]. Interestingly, the content of ENO1 

Fig. 6  Quantification of the DEMs enriched in seven important pathways by targeted metabolomics. 00051, mannose metabolism pathway; 
02060, phosphotransferase system (PTS) pathway; 00410, β-alanine metabolism pathway; 00330, arginine and proline metabolism pathway; 00680, 
methane metabolism pathway; 00010, glycolysis/gluconeogenesis pathway; 00360, phenylalanine metabolism pathway. Differences between 
mean values were assessed by two-tailed Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001
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was also upregulated upon IFN-γ induction in BMECs 
(Fig.  6D), indicating that ENO1 might also involves in 
IFN-γ-induced malignant transformation of BMECs.

Lastly, the content of phenylacetylglycine in pheny-
lalanine metabolism was significantly downregulated 
upon IFN-γ induction in BMECs (Fig. 6E; Fig. S9). Phe-
nylacetylglycine is a terminal product of phenylalanine 
metabolism and accepted as a biomarker for phospholipi-
dosis [38], diabetes [39], and prostate cancer [40]. How-
ever, there is limited information about the correlation 
between phenylacetylglycine and arginine metabolism or 
tumorigenesis. Thus, phenylacetylglycine might involves 
in IFN-γ induced arginine depletion and malignant trans-
formation of BMECs indirectly.

In conclusion, our study reveals potential metabolites 
and signaling pathways in BMECs upon IFN-γ induc-
tion. IFN-γ induces arginine depletion and malignant 
transformation of BMECs possibly through modulation 
of arginine metabolism, cell osmosis, and metabolites 
associated with tumorigenesis, including S-HMG and 
ENO1. These results provide potential theoretical basis 
for clarifying mechanism of diseases due to abnormal 
IFN-γ level.
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