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Abstract

Background: Marine and aquaculture industries are important sectors of the food production and global trade.
Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and
marine fish communities are rapidly incorporating novel and most up to date techniques for detection,
characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large
disease outbreaks.

Main text: One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in
the present paper. This allowed us to describe the most recent development research regarding the control of diseases
in the aquatic environment as well as promising avenues that may result in beneficial developments. For the
characterization of diseases, traditional sequencing and histological based methods have been augmented with
transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using
qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand
pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens
or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide
based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating
various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine.

Conclusions: In our modern times, when the marine industry has become so vital for feed and economic stability,
even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease
to control invasive species populations should be considered.
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Background
Fish and aquatic industry
The global annual per capita fish consumption of fish
was 20.1 kg for the year 2013; with an average consump-
tion of 26.8 kg in industrialized countries and 18.1 kg in
developing countries, respectively [1]. Fish protein
accounted for up to 20% or more of the total animal
protein consumed in low-income food-deficient coun-
tries and around 17% globally in the year 2013 [1]. In
addition to producing a critical part of nutrition, food

production through the marine industry also represents
a major form of employment which harvested nearly 160
billion US dollars in 2014 and employed 56.6 million
people [1]. Of the total 167.2 million tonnes of food
products that the marine industry produced in 2014, the
aquaculture accounted for 44.1% (73.8 million tonnes)
production [1]. Carp (Cyprinidae) makes up a significant
portion of the total freshwater cultured fish supply and
is an especially important food in China and the remain-
der of East Asia, which produced 61.3 and 26.7% of
cultured carp, respectively in 2010 [1, 2]. Salmon and
shrimp are considered high-value species that are heavily
traded and are also significant members of the aquacul-
ture industry [1].
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Viral diseases of fish and crustaceans in the aquatic
industry
Diseases of aquatic products, such as viral infection of
aquatic animals, have become more problematic and are
causing significant economical losses to the aquaculture
industry [3–7]. The most serious viruses affecting
cyprinid fish including koi and common carp (Cyprinus
carpio L.) are: 1) Cyprinid herpesvirus 3 (CyHV-3), a
member of the Alloherpesviridae family of viruses, which
is the aetiological agent of a highly contagious disease
termed Koi herpesvirus disease (KHVD) and 2) spring
viraemia of carp virus (SVCV), which is a member of the
Rhabdoviridae family of viruses. In addition, outbreaks
of KHVD and SVC in cultured common carp caused
significant economic losses in recent years. KHVD has
been a major research topic in aquatic medicine and has
been listed as a notifiable disease in Germany since
2005, in England and by the World Organization of
Animal Health (OIE) since 2007 [8–13]. Similarly, the
SVC is a major topic of aquatic research and is listed as
a notifiable disease in the USA, and has been listed by
the OIE since 1997 [14, 15]. Hemorrhagic septicemia
virus (VHSV) is another pathogenic member of Rhabdo-
viridae known to infect northern pike, Esox lucius fry
[16]. Members of the Rhabdoviridae family of viruses
that code for the non-virion protein (NV) are subtyped
into their own genus termed Novirhabdovirus; such as
infectious hematopoietic necrosis virus (IHNV), which
causes an OIE notifiable disease and is an economically
important in a wide variety of salmonid species [17]. In-
fectious salmon anemia virus (ISAV) the causative agent
of the ISA and White Spot Syndrome Virus (WSSV) the
causative agent of White Spot Disease are of major
economic importance in the respective salmon and
crustacean aquaculture sector [18, 19]. Iridoviridae com-
prises a family of double stranded DNA virus that infect
a wide variety of invertebrate and marine organisms,
such as the genus Megalocytivirus, represented by red
sea bream iridovirus (RSIV) [20, 21]. Ranavirus, an-
other representative genus in the Iridovirdae family, is
a global emergent pathogen capable of infecting fish, am-
phibians, and reptiles in both captive and wild animals
causing hemorrhagic disease [22]. Betanodaviruses, which
are non-enveloped single stranded RNA viruses, comprise
an additional important family of viruses impacting the
aquaculture industry [23, 24].

Bacterial pathogens
Among the most note-worthy bacterial aquatic patho-
gens is the warmwater bacterium Aeromonas hydro-
phila as well as its cold water relative Aeromonas
salmonicida, which infect a variety of fish species in
both the freshwater and marine environment. Among
these susceptible fish species, tilapia, cyprinid [25, 26]

and salmonid (salmon and trout) fish [26] are of par-
ticular economic importance. A bacterium that has
mostly been studied in infecting salmonid is the en-
terobacterium Yersinia ruckeri, causative agent of then
enteric redmouth disease, salmonid which has been
associated with haemorrhages and petechial lesions in
infected fish (Fig. 1; from personal archives) [27–29].
Moreover, the enterobacterium Edwardsiella ictaluri
is considered one of the most important bacterial
pathogen affecting the culture of catfish, in particular
the channel catfish Ictalurus punctatus in the South-
ern United States [26] and, as it has been more re-
cently reported, the striped catfish Pangasianodon
hypophthalmus in Vietnam [30, 31]. In shrimp, bac-
terial infections are mostly linked to bacteria of the
Vibrio family, in particularly to Vibrio parahaemoly-
ticus which has recently been linked to an emergent
disease termed acute hepatopancreatic necrosis dis-
ease [32].

Parasites
Parasitic diseases are often associated with more
chronic diseases that can cause a sustained loss of
productivity over the whole production cycle, and
therefore the economical impact of these diseases
can often be very significant. Among the most prominent
parasitical diseases are the ones caused by myxozoans par-
asites such as Myxobolus cerebralis and Tetracapsuloides
bryosalmonae, the causative agents of whirling disease and
proliferative kidney diseases in salmonids, respectively
[33, 34]. Ciliates are common inhabitant of both the
freshwater and marine environment. Among these
species, Ichthyophthirius multifiliis (often shortened
to “Ich”) is associated with high levels of mortality
(up to 100%) in freshwater fish [35]. This external
parasite has a life cycle comprised of three stages, in-
cluding a trophonts stage during whith it feeds on
the fish skin where it forms white circular lesions that
leads to the disease colloquial name of “white spot
disease” [35–37]. While I. multifiliis is limited to
freshwater, another ciliated, Cryptocaryon irritans is
found is saltwater that causes a very similar condition,
sometime also referred to as “white spot disease” or
“marine ich” [38].
In molluscs, two parasites are particularly noteworthy:

Marteilia refringens and Bonamia ostreae which affects
the European flat oyster Ostrea edulis. The impact of
these parasites has led to the introduction of more
resistant species of oyster termed Crassostrea gigas to
replace Ostrea edulis as the most commonly cultivated
oyster species. This manuscript will review some of the
newest approaches used to study aquatic diseases, in
terms of detection characterization and possible treatment
strategies.
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Bio diagnostics/characterization
Rapid detection/nanotechnology
Histological observation followed by polymerase chain
reaction (PCR) [39], or cohabitation studies as per-
formed by El-Matbouli & Soliman [40] to demonstrate
transmission of CyHV-3 virus from goldfish (Carassius
auratus auratus) to naïve carp have been the classical
method of detection and demonstration of transmission
of pathogen(s) to new hosts. PCR-based methods
coupled to electron microscopy have also been used in
categorizing aquatic pathogens, such as in the classifica-
tion of the parasitic ciliate infecting shrimp [41]. How-
ever, updated methods for rapid detection is required to
tackle the rapid spread of communicable pathogens in
aquatic farming, especially in densely populated environ-
ment used in aquaculture. For example, preliminary
differentiation of CyHV-3 from channel catfish virus was
performed by restriction analysis of purified DNA ex-
tracts and led to a PCR-based method detection [42, 43].
Subsequently, a 1 step process was developed using
loop-mediated isothermal amplification (LAMP) with-
out requiring a thermal cycler for detection of CyHV-3
[44–46]. Alternatively, nested PCR or the capture of
viral particles by antibodies followed by LAMP can also
be used for highly sensitive detection of CyHV-3 [47–49].
PCR based methods of detection can be coupled with
DNA-array technology for rapid detection of secondary
infections in diseased fish [50]. For rapid and visual based

detection for CyHV-3, the product of LAMP-PCR is visu-
alized by mixing with SYBR-Green I to confirm infection
[51]. Attachment of single stranded DNA molecules to
gold nanoparticles allows for rapid (15 min) and sensitive
detection (10− 3 TCID50 ml− 1) of SVCV RNA based on
visualization (Fig. 2; reproduced from Saleh et al. [52] with
permission from Springer Nature) of colloidal solution
[53] and the procedure can be readily adapted for detec-
tion of aquatic viruses [54, 55]. In addition to the various
molecular based methods, immunohistochemistry in
terms of histological assays [56] or enzyme-linked im-
munosorbent assay (ELISA) are also used to detect viral
infections [57–63]. Detection of viral particles in affected
species and carriers is important to combat the spread of
outbreaks [64]. Recently, a method described as liquid
chip which combines flow cytometry, nanometer fluores-
cent microspheres with traditional chemical luminescence
technology has been described for rapid detection of
several Rhabdoviridae members including SVCV, IHNV
and VHSV [65].

Characterization
Traditionally, pathogens of aquatic organisms have been
characterized by sequence analysis [66–69], and by
microscopic examination of the pathogen and/or host by
differing methods that include histological staining [70]
and electron microscopy [71]. Recently, deep sequencing
along with microarray hybridization has been used to

Fig. 1 Clinical signs in a rainbow trout (Oncorhynchus mykiss) infected with Yersinia ruckeri (from personal archives, previously unpublished). a Petechia
and haemorrhages in the oral region; b Exophtalmia; c Large arrows- blood in the intestinal track and Small arrow- petechia in the visceral tissue
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identify pathogen microRNAs (miR) involved in gene
regulation [72]. Similarly, real-time quantitative reverse
transcription PCR (RT-qPCR) has been used to show
differential expression of the host miR-10a-3p, a compo-
nent of the master transcriptional regulator for spatial
patterning genes termed homeobox (Hox) genes, during
infections by VHSV rock bream iridovirus (RBIV) of
olive flounder and rock bream [73]. Real-time quantita-
tive PCR (qPCR) or deep RNA sequencing can be used
in transcriptome analysis to characterize host-pathogen
interactions [74]. Histological assays can be coupled with
immunofluorescence techniques to further elaborate the
ultrastructure make up of disease causing pathogens
[75]. For example, indirect fluorescence immunohisto-
chemistry was adapted to E. ictaluri using the monoclonal
antibody Ed9 [76] as the primary antibody and a fluorescein
isothiocyanate (FITC) labeled goat anti-mouse secondary
antibodies [77]. This allowed identification of the bacteria
with the tissue and contributed in demonstrating the role
of abrasion sites as a route of infection for E. ictaluri in I.
punctatus [78]. Reverse genetic experimentation in which
the reading frame of various viral proteins are altered, such
as the non-virion (NV) non-structural protein, G and M
proteins, or recombinant viruses are produced has been
used to investigate virulent factors in VHSV [79–83].
Several approaches have been applied to investigate the

virulence mechanisms of bacterial pathogens. For example,
in vivo induced antigen technology (IVIAT) relies on
harvesting antibodies from host exposed to the pathogen
of interest. The antibodies are then adsorbed against an in
vitro culture of the pathogen, therefore removing the anti-
bodies that react against antigens expressed in vitro. The
only remaining antibodies, recognizing antigens specifically
expressed in vivo, are then used to screen an expression li-
brary expressing random sequences from the pathogen ge-
nomes [84, 85]. Regarding aquatic species, IVIAT has been

used to investigate Edwardsiella tarda [86], Vibrio anguil-
larum [87] as well as A. salmonicida subsp. salmonicida
[88, 89] and, more recently, Photobacterium damselae
subsp. piscicida [90].
Gene expression profiling has been applied to I. multi-

filiis to identify genes that are differentially regulated
during the different life stages of the parasite [91, 92].
This approach has led to the discovery that gene expres-
sion in I. multifillis is extremely stage specific [91] and
has led to a better understanding of the expression of
the virulence genes in this parasite. Moreover, it has
been reported that senescence of the parasite was corre-
lated to a lower expression for the genes of its Rickettsia
endosymbiont [92]. Similarly, Mai et al. performed an
immunoproteomic analysis of C. irritans [93] using 2D
gels and anti-C. irritans antibodies isolated from both
rabbit and grouper (Epinephelus coioides). This approach
allowed to identify several proteins that were differentially
regulated between life stages of the parasite, including sev-
eral antigenic ones with potential in vaccine development.
Among the isolation were proteins of the cytoskeletal ap-
paratus (β-tubulin and actin), as well as the enzyme eno-
lase and the heat shock protein hsp70 [93]. Moreover, Yin
et al. [94] conducted an analysis of the transcriptomes of
trophont, either untreated or treated at either 12 or 25 °C.
The authors described up-regulation of several genes re-
quired for the cell’s survival at lower temperature and
entry into dormancy [94].

Proteomics
Exogenous expression in bacteria of proteins found in
aquatic pathogens followed by PAGE-Gel analysis and
Western blotting with native proteins can be used to
detect in vivo posttranslational modifications by differ-
ences in observed mass [95, 96]. Monoclonal antibodies
against CyHV-3 have been used to measure the expression

Fig. 2 Application of nanoparticles for the diagnostic of spring viraemia of carp virus. a Unmodified gold nanoparticles (AuNPs) for the
colorimetric detection of spring viraemia of carp virus (SVCV)-RNA (from Saleh et al. [52], figure subject to copyright and reproduced with
permission from Springer Nature). Tube 1: Positive SVCV-RNA sample (blue color). Tube 2: No template control (red color). Each tube contained
5 μl of sample, 1.8 μM of primer and 0.1 M NaCl. b Serial dilution of SVC-RNA (Tubes 1 to 10 contain 105, 104, 103, 102, 10, 10–1, 10–2, 10–3 10–4

and 10–5 TCID50 ml − 1 SVC-RNA respectively) showing the sensitivity limit of the assay. The SVC-AuNPs assay could detect SVCV-RNA as far as the
10–3 TCID50 ml − 1 dilution (Tube 8; blue color)
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kinetics of various proteins involved in protein assem-
bly [97]. Analyses of whole proteomes have also been
carried out; for example, in Y. ruckeri [98], where the
proteomes of four different isolates were compared
under iron-replete and iron-depleted conditions. This
revealed the spread of the bacterium’s response to iron de-
pletion as 61 proteins were found to be differentially
expressed (35 up and 26 down-regulated). Among these
were several siderophores (iron acquisition molecules that
play a crucial role in the microbial infection process
when iron is often the bacteria’s limiting factor) that were
up-regulated and catalase that were down-regulated. Inter-
estingly, the bacteria appeared to shift from iron-based
superoxide dismutase (SodB, 28.6 fold downregulated) to
manganese-based using a manganese based superoxide
dismutase (SodA) that was 5.6-fold upregulated.
Differential transcriptional patterns obtained from

qPCR based methods [99, 100] can be coupled to
protein-based studies [101] to enhance our understand-
ing of pathogen-host interactions. For protein purifica-
tion, antibodies raised against the pathogen(s) of
interest can be used to capture proteins involved in
host-pathogen interactions which are subsequently
identified by mass spectrometry [102]. Such studies
have been used to differentiate between host pathogen
interactions of susceptible carp versus carrier goldfish
for CyHV-3 entry and replication [103, 104]. Addition-
ally, proteomic based approach revealed that although
all 156 open reading frames (ORFs) are CyHV-3 are tran-
scribed during viral maturation [105], only 46 proteins are
incorporated into mature virions [106, 107].Whereas,
exogenous expression of viral proteins can demonstrate
lethal properties for those proteins [108]. Therefore,
proteomic should be used to enhance and elucidate tran-
scriptional based data.

Treatment
RNA interference (RNAi)
RNA mediated interference (RNAi) machinery is pre-
sumed to have developed as a defensive mechanism in
eukaryotic organisms against viruses and transposable
elements [109]. RNA-mediated interference (RNAi) by
the use of short double-stranded RNA (dsRNA) was
originally demonstrated in Caenorhabditis elegans by
Fire et al. [110], and the mechanism and machinery for
the function of small non-coding RNA in RNAi has
since been worked out in great detail for a variety of
organisms [111, 112]. During the post-transcriptional
gene silencing (PTGS) of exogenous transcripts by RNAi,
the RNA-induced silencing complex (RISC) converts long
dsRNA transcripts into siRNA oligos (21-25 nt), which
guide the complex by antisense complementation to
degrade targeted genes [113]. RNAi technology has been
important in understanding gene function in aquatic

diseases [114] and can be used to study RNA-based
viruses which are traditionally investigated by reverse gen-
etics [115]. RNAi-based approaches are also suitable for
the development of novel therapies against viral diseases
of livestock and aquatic organisms and represent a prom-
ising method in developing novel therapeutics and anti-
viral medications [116]. A limited number of studies have
reported about the treatment of viral diseases by RNAi,
although RNAi based therapies for viral diseases have
been in the pipeline to treat invertebrate, vertebrate and
even human pathogens [117].

Studies that used RNAi technology in aquatic medicine
Viral
In a recent study, feeding shrimp with bacteria coding for
dsRNA that targeted endogenous shrimp non-essential
Rab7 and STAT genes caused systemic induction of the
RNAi pathway against the targeted genes [118]. The
technique has been applied to provide protection from an
important disease in shrimp farms, termed White spot
syndrome virus (WSSV), by feeding shrimp with bacteria
expressing dsRNA against several important viral genes
[119]. Inhibition by RNAi of WSSV was first demon-
strated in a non-Shrimp cell line, termed SISK, and by
intramuscular injection of live shrimp [120, 121], and the
results were verified when shrimp were fed with
dsRNA-transcribing bacteria [122]. Permanent epitheli-
oma papulosum cyprini (EPC) and chinook salmon embry-
onic (CHSE-214) fish cell lines that express long dsRNA
which target the G protein of viral hemorrhagic septi-
cemia virus (VHSV) inhibited in vitro replication of VHSV
without stimulating the interferon pathway [123]. Treat-
ment with formaldehyde-attenuated bacterial cells that
produce dsRNA targeting the hemagglutinin gene of ISAV
inhibited in vitro viral replication [124]. RNAi targeting
the nucleoprotein ‘N’ or phosphoprotein “P” has been
shown to inhibit in vitro replication of SVCV [125]. Simi-
larly, RNAi experiments targeting thymidine kinase ‘TK’
or DNA polymerase ‘DP’ of CyHV-3 inhibited in vitro rep-
lication [126]. CyHV-3 is most effectively inhibited by
RNAi when multiple viral genes are targeted [126, 127].

Bacterial/parasitic
RNAi treatment has shown promising results in the
treatment of parasitic infections in fish. Saleh et al. [128]
demonstrated that in vitro RNAi knockdown of ATP/
ADP antiporter and methionine aminopeptidase II of
the Heterosporis saurida, parasite of the lizardfish (Saur-
ida undosquamis), reduced targeted gene transcription
and spore counts in cell culture assays. Potential for
RNAi-based medicine has been demonstrated in vivo by
treating the oligochaete host Tubifex tubifex for the cnidar-
ian myxozoan parasite (Myxobolus cerebralis) which causes
whirling diseases in salmonid fish [129]. In subsequent
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trials, Sarker et al. [130] showed that T. tubifex soaked
in solution containing dsRNA targeting the serine
protease of the M. cerebralis inoculated the cnidarian
myxozoan parasite from infecting the rainbow trout
(Oncorhynchus mykiss) host.

Is CRISPR/Cas based medicine on the horizon?
Cre (causes recombination) and other tyrosine recombi-
nases have traditionally been used for genomic editing.
These tyrosine site-specific recombinases are typically
used to reintegrate exogenous DNA flanked by palin-
dromic into a host genome such as observed in the Cre/
Lox system in which Cre is used with the accompanying
Lox palindromic DNA sequence [131]. A newer genome
editing tool termed CRISPR/Cas (clustered regularly
interspaced short palindromic repeats/CRISPR-asso-
ciated), takes advantage of the prokaryotic and archaea
immune system to reintegrate foreign DNA using a Cas
protein and a guide RNA (gRNA) [132]. In addition to
gene editing, the nuclease activity of the CRISPR/Cas
pathway can be induced to degrade foreign RNA/DNA
[133]. The CRISPR/Cas gene suppression technique was
recently used by Zhao et al. [134] to confirm that RNAi
knockdown of CyHV-3 TK and DP genes reduced viral
replication and virus titer as reported previously by our
group [126].

Conclusion
Prophylactic treatments, for example aiming at strength-
ening or preparing the immune response such as vaccin-
ation, are always preferable to therapeutic ones [135–138].
However, preventative therapies are not always possible or
practical, therapies based on small nucleotide based medi-
cine such as siRNA or CRISPR/Cas are on the horizon.
RNAi-based technology has already been suggested to be
useful in aquatic and fish medicine to combat various
types of diseases caused by viral and parasitic agents
[116, 139]. Effectiveness of using RNAi or other nu-
cleic based therapies rely on targeting pathogens
transcripts that interfere with the hosts defensive cap-
abilities used in viral entry or replication [140, 141].
RNAi and CRISPR/Cas mediated interference [133]
along with the use small molecules to promote en-
dogenous host response to viral infections [142, 143]
are powerful emerging therapy strategies to deal with
diseases in aquatic medicine. For those interesting
cases where some aqua-species have become invasive,
using a disease may be the methodology used to
control the threat. For example, the release of CyHV-3
is seriously being considered to eradicate the invasive
carp in Australia to restore populations of native fish
species [144, 145] following the incidental example
happening in the USA [146].
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