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Abstract

Background: An outbreak of Salmonella Kentucky followed by a high level of sustained endemic prevalence
was recently observed in a US adult dairy herd enrolled in a longitudinal study involving intensive fecal sampling.
To understand the invasion ability and transmission dynamics of Salmonella Kentucky in dairy cattle, accurate
estimation of the key epidemiological parameters from longitudinal field data is necessary. The approximate
Bayesian computation technique was applied for estimating the transmission rate (β), the recovery rate (γ) and
shape (n) parameters of the gamma distribution for the infectious (shedding) period, and the basic reproduction
ratio (R0), given a susceptible-infectious-recovered-susceptible (SIRS) compartment model with a gamma distribution
for the infectious period.

Results: The results report that the mean transmission rate (β) is 0.417 month-1 (median: 0.417, 95% credible interval
[0.406, 0.429]), the average infectious period (γ-1) is 7.95 months (median: 7.95, 95% credible interval [7.70, 8.22]), the
mean shape parameter (n) of the gamma distribution for the infectious period is 242 (median: 182, 95% credible
interval [16, 482]), and the mean basic reproduction ratio (R0) is 2.91 (median: 2.91, 95% credible interval [2.83, 3.00]).

Conclusions: This study shows that Salmonella Kentucky in this herd was of mild infectiousness and had a long
infectious period, which together provide an explanation for the observed prevalence pattern after invasion. The
transmission rate and the recovery rate parameters are inferred with better accuracy than the shape parameter,
therefore these two parameters are more sensitive to the model and the observed data. The estimated shape
parameter (n) has large variability with a minimal value greater than one, indicating that the infectious period of
Salmonella Kentucky in dairy cattle does not follow the conventionally assumed exponential distribution.
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Background
Salmonella is one of the major causes of food-borne
gastroenteritis worldwide and poses a considerable
threat to public health. In the United States (US) alone
there are approximately 1.4 million illnesses, 16,000
hospitalizations, and 400 deaths annually [1,2]. Humans
generally acquire salmonellosis through consumption
of contaminated food or contact with infected animals
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or a contaminated environment [3,4]. Emergence of
multidrug-resistant Salmonella in human infections is
particularly serious due to increased morbidity and
mortality [5].
More than 2,500 serotypes of Salmonella have been

identified and significant variability has been found
in virulence, infectious dose, and host. Most human
Salmonella infections are caused by relatively few
Salmonella subtypes (S. enterica Enteritidis, Typhimurium,
and NewPort) [6], but all Salmonella serotypes are
considered potentially pathogenic [7]. Farm animals
are recognized as important reservoirs for Salmonella
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and other food-borne pathogens [8]. Many Salmonella
serotypes have been found in samples from dairy animals
and their environment, some of which have also been
isolated in human cases [9]. Reduction of Salmonella
prevalence in farm animals and bacterial loads in the
contaminated environment is important to decrease the
risk of zoonotic Salmonella infection [8].
Aiming to ensure a safe food supply through identifying

pathogen transmission pathways and subsequent best
management practices in dairy farms, the Regional Dairy
Quality Management Alliance (RDQMA) and the Agri-
culture Research Service (ARS) of the USDA established
a longitudinal observational study on three commercial
dairy farms in the Northeastern US [10], one of which was
located in Pennsylvania. Fecal samples were intensively
collected from all adult animals in this herd beginning
in the spring of 2004. These samples were tested for
Salmonella and a number of other food-borne pathogens
[10,11]. After an initial outbreak of Salmonella Cerro, a
subsequent outbreak of Salmonella Kentucky with a high
level of prevalence and long-term endemic infection in
this farm was found [12]. Drug-resistant Salmonella
Kentucky (ST198) from human cases has recently been
identified from a study of National Salmonella Surveillance
Systems from France, England and Wales, Denmark, and
the United States [13]. The identification of Salmonella
Kentucky is also a common occurrence in poultry [14].
Understanding the transmission dynamics that underlie

observed shedding patterns from longitudinal field
data is essential for the effective design of Salmonella
prevention and intervention. As the transmission dynamics
of Salmonella spp. are determined by complex interactions
among host, pathogen, and environment, mathematical
modeling approaches have been applied to provide insights
in the understanding of transmission [15-19]. However, a
common problem in mathematical models in epidemiology
is how to accurately and reliably estimate the non-
observable model parameters such as the transmission
rate, given the available longitudinal field data. To solve
this problem, a number of Bayesian inference approaches
for infectious disease transmission models have been
developed [20-25]. Posterior distributions of parameters
can generally be computed using an explicit likelihood
function given parameter prior distributions with the
help of Markov Chain Monte Carlo (MCMC) methods
[20-22], or using a likelihood-free approach, the ap-
proximate Bayesian computation (ABC) technique [23]
with a newly proposed efficient sequential Monte Carlo
algorithm [24,25].
The objective of this study was to infer from longitu-

dinal field data the key epidemiological parameters that
are important to understand the invasion ability and
transmission dynamics in an outbreak and subsequent
endemicity of Salmonella Kentucky on a dairy farm.
Specifically, we estimated the transmission rate (β), the rate
(γ) and shape (n) parameters of the gamma distribution for
the infectious (shedding) period, and the basic reproduction
ratio (R0) using the approximate Bayesian computation
technique.

Methods
Longitudinal field data
The dairy herd (so-called “Farm B”) in Pennsylvania
consisted of approximately 100-110 adult cows housed
in a free stall barn [10-12]. Calves from this herd were
transferred to an off-site rearing center at 6 months of
age and were returned to the herd as replacement animals
within 1 to 2 months prior to their first calving. Intensive
fecal samples were collected for all adult cows in the
herd with a sampling interval of 6 to 8 weeks during
the study period. Methods for isolation and serotyping
of Salmonella were previously described [10-12].
The longitudinal data used in this study are composed

of observed within-herd prevalence (proportion) of animals
shedding Salmonella Kentucky for a total of 14 time points
from January 2006 to December 2007. As the sensitivity of
the culture test for Salmonella is generally estimated to
be imperfect and relatively low, we used a correction to
account for likely false-negative culture results. This rule
states that a negative test found between two immediate
(neighboring) positive tests in an individual cow was
assumed to be a false-negative test and this negative test
was corrected to be positive (+- +→+++). The specificity
of the culture test for Salmonella was assumed to be one,
so there were no false-positive tests.

The SIRS model
Multiple episodes of shedding of Salmonella Kentucky
were observed in individual cows’ test result profiles. Due
to the assumed perfect test specificity and imperfect test
sensitivity (see above), at least two or more consecutive
negative tests had to appear between these test-positive
episodes to define a second or higher shedding (infection)
period. On the basis of the shedding pattern of individual
cows, we developed a susceptible-infectious-recovered-
susceptible (SIRS) transmission model with the following
assumptions:

(a) First lactation animals entering the herd as
replacement animals were assumed to be susceptible
(S) because no positive tests were found in any heifers
leaving for the off-site facility or returning to the herd.
(b) Test-positive animals (shedding Salmonella Kentucky)
were assumed to be in the infectious state (I).
(c) The infectious (shedding) period was assumed to
follow a gamma distribution f(t|n, γ) = (n γ)ntn-1 exp
(-nγt)/Г(n)) with two parameters, the rate (γ) and
shape (n), reflecting that time since infection is
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important [15]. When the shape parameter (n) is one,
the gamma distribution reduces to an exponential
distribution.
(d) Susceptible animals (S) remained in their
susceptible state until they became infectious (I) at rate
β I/ N(force of infection), where the transmission rate
is denoted by β.
(e) The time period covering two or more consecutive
negative tests in individual animals between the two
neighboring positive tests was relatively long,
approximately 3 months or more. Within that time
period, animals were assumed to build their immunity,
becoming recovered (R). Eventually during that period,
the recovered animals (R) lost their immunity and
became susceptible (S) again at rate ϕ.
(f ) Susceptible animals were assumed not to be
distinguished based on the presence or absence of prior
exposure to Salmonella (i.e. no immunological memory).
(g) Direct cow-cow transmission was considered to
represent the common fecal-oral transmission route of
Salmonella Kentucky in the herd.
(h) Herd size was assumed to be a constant (108 cows
in this study based on the average herd size across all
14 sampling time points), reflecting a constant size of
the milk producing herd.
(i) To maintain a constant herd size, we assumed the
replacement rate (μ) of the milking herd was the same
as the removal rate (μ) of animals from the herd.

There are a total of 5 parameters in the SIRS model
described in Figure 1. Three of these are unknown and
to be estimated: the transmission rate (β) and the rate
(γ) and shape (n) parameters describing the gamma
distribution for the infectious period. The replacement
rate (μ, or the removal rate) of animals was assumed to be
constant and was calculated from the animal movement
data to be 0.03 (month)-1, representing the average duration
of survival of cows in the milking herd at approximately
Figure 1 Flow diagram of the susceptible-infectious-recovered-suscep
Salmonella Kentucky in an adult dairy herd. Susceptible animals (S) wer
remaining infectious a certain amount of time upon infection, the length o
rate (γ) and shape (n) parameters, infectious animals became recovered an
ered animals (R) lost their immunity at rate (ϕ) and became susceptible ag
coming into the herd was assumed to be the same as the general remova
2.8 years. The rate of immunity loss (ϕ = 0.33 (month)-1)
was also assumed constant and calculated to be around
3 months because it needed to be equal to or less than
the time period for at least two consecutive negative
tests (covering the recovered (R) state and its next
susceptible (S) state).
The system of ordinary differential equations describing

the transmission dynamic model (SIRS) with a gamma
distribution for the infectious period in Figure 1 is given
in Additional file 1: Appendix A.

Method of estimating parameters
We applied the approximate Bayesian computation (ABC)
technique [23] to infer the unknown epidemiological
parameters (β, γ, n and R0) given the longitudinal data
and the SIRS model. Uniform (flat) prior distributions
were assumed for the 3 unknown parameters, β ∈ [0.01,2],
γ ∈ [0.01,1], and n ∈ [1, 500].
Unknown parameters (β, γ, n) were sampled from their

prior distributions and these sampled values were used
to numerically solve the system of ordinary differential
equations (the SIRS model in Additional file 1: Appendix
A). The sum of squared errors between the fitted and
observed prevalence was calculated. If the sum of squared
errors was less than a desired tolerance value, then the
sampled parameter values were accepted. However this
rejection algorithm was not effective and was not able
to put into in practice due to high computational demands.
An efficient algorithm recently developed for ABC using
the sequential Monte Carlo method was implemented
for parameter estimate and model selection for nonlinear
dynamic systems [24,25]. In this study we used this
efficient algorithm for parameter estimation.
To examine the invasion ability, we estimated the basic

reproduction ratio (R0), which represents the number of
secondary cases caused by the introduction of a primary
index case into a fully susceptible population during its
whole infectious period. The basic reproduction ratio (R0)
tible (SIRS) model describing the transmission dynamics of
e infected at rate β I / N and became infectious (shedding, I). After
f which was assumed to follow a gamma distribution described by the
imals (R), with fully established infection-induced immunity. The recov-
ain. To maintain the herd size (N), the replacement rate (μ) of animals
l rate (μ) of animals from the herd.
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of the SIRS model in this study is a function of the other
three parameters (β, γ, n)and was obtained using the
next-generation matrix [26]:

R0 ¼ β

μ
1−

nγ
nγ þ μ

� �n� �
ð1Þ

Posterior predictive check and cross-validation
Using the estimates from the posterior distributions of
parameters (β, γ, n), stochastic simulations based on
the direct Gillespie algorithm for the SIRS model were
performed [27]. The expected prevalence and its 2.5%
and 97.5% quantiles were compared to the observed
prevalence. As we had only one dataset of the observed
longitudinal prevalence (consisting of 14 data points),
cross-validation was performed to check the behavior of
the SIRS model. A total of 14 datasets for cross-validation
were formed by removing each data point once from the
full observed prevalence data set.

Impact of the rate of loss immunity
As the rate at which immunity wanes (ϕ) was uncertain
and partly based on the sampling interval, we repeated
the ABC analyses with a slower rate, 0.25 (month)-1, to
investigate the effects of varying the rate of immunity
loss (ϕ) on the estimation of the transmission rate (β),
the rate (γ) and shape (n) parameters for the gamma
distribution for the infectious period, and the basic
reproduction ratio (R0).

Results
Posterior distributions of parameters (β, γ, n)
Posterior distributions of the transmission rate (β), and the
rate (γ) and shape (n) parameters of the gamma distribution
describing the infectious period are shown in the top
row of Figure 2. All distributions were unimodal. For
the transmission rate (β) and the rate of recovery (γ)
the ranges of these two posterior distributions were
relatively narrow. The transmission rate (β) showed a
mean of 0.417 month-1 with a 95% credible interval of
0.406 to 0.429. The average recovery rate (γ) was
0.126 month-1 with a 95% credible interval of 0.1216 to
0.1298 month-1. The shape parameter (n) had large
variability with a median of 182 (mean: 242) with a 95%
credible interval of 16 to 482.
The bottom row of Figure 2 shows scatter plots of

paired parameters. Each scatter plot illustrates three
time snapshots from the start of simulation to the middle
and finally to the stable state – the process of how the
sequential Monte Carlo algorithm in ABC leading to
the convergence posterior distribution.
The infectious period and the basic reproduction ratio (R0)
The distributions of the infectious period and the basic
reproduction ratio (R0) using the estimates from the
posterior distributions of parameters (β, γ, n) are shown
in Figure 3a and 3b, respectively. The average infectious
period had a mean of 7.95 months (1/γ = 1/ 0.1258)
with a 95% credible interval of 7.70 (1/γ = 1/ 0.1298) to
8.22 (1/γ = 1/ 0.1216) months. The R0 had a mean of
2.91 with a 95% credible interval of 2.83 to 3.00.
Posterior predictive check
Comparison between the observed prevalence and the
expected (fitted) prevalence with the predicted 2.5%
and 97.5% quantile is demonstrated in Figure 4. The
expected prevalence exhibited agreed well with the
observed prevalence before Salmonella Kentucky reached
endemic prevalence. All of the observed prevalence data
points were within the range from the predicted 2.5%
to 97.5% quantile; two observed prevalence data points,
the 12th and 14th, were quite close to the low 2.5% and
high 97.5% quantiles, respectively.
Cross-validation
Boxplots of the transmission rate (β), the recovery rate
(γ), the infectious period, and the basic reproduction
ratio (R0) are shown for 14 sub-datasets in Figure 5.
The transmission rates (β) mostly ranged from 0.39 to
0.46 month-1, and the recovery rate parameters (γ)
from 0.112 to 0.138 month-1. The infectious period was
mostly between 7 and 9 months, and the R0 value was
between 2.70 and 3.14 for almost all datasets.
Impact of varying the rate of immunity
We studied the impacts of varying the rate of immunity
(ϕ) on the transmission rate (β), the rate (γ) and shape (n)
parameters of the gamma distribution for the infectious
period, and the basic reproduction ratio (R0). When the
rate of immunity (ϕ) was changed from 0.33 (month)-1 to
0.25 (month)-1 (i.e., the average duration in the recovery
state (R) thereby increased from 3 months to 4 months),
the estimated transmission rate (β) parameter (mean:
0.417→ 0.428 month-1; 95% credible interval [0.1216,
0.1298]→ [0.1137, 0.1249] month-1), and the rate of
recovery (γ) parameter (mean: 0.1258→ 0.1195 month-1;
95% credible interval [0.1216, 0.1298]→ [0.1137, 0.1249]
month-1), and the basic reproduction ratio (R0) (mean:
2.9→ 3.09; 95% credible interval [2.83, 3.00]→ [2.91,
3.31]) changed only slightly, but the shape parameter
(n) had a relatively large change and was well inferred
(median: 182→ 11; 95% credible interval [16, 482]→
[4, 32]). Posterior distributions of these parameters are
given in Figure B1 in Additional file 1: Appendix B.



Figure 2 Posterior distributions (top row: a, b, c) and scatter plots (bottom row: a, b, c) of the transmission rate (β), and the rate (γ)
and shape (n) parameters for the gamma distribution for the infectious period. Each scatter plot shows three time snapshots from the start
of simulation to the final stable state, illustrating the process of how the sequential Monte Carlo algorithm in approximate Bayesian computation
results in the convergent posterior distribution.
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Discussion
The mean estimate of the basic reproduction ratio (R0)
for Salmonella Kentucky in adult dairy cows from our
data is 2.91, which indicates a relatively mild infectiousness
(one primary shedding cow can, on average, infect 3
susceptible cows). The relatively modest R0 value also
indicates that preventative efforts to reduce the reproduction
rate to values below 1 may be reasonable and even so-called
‘leaky’ vaccines may prove to be sufficiently efficacious to
provide herd immunity [17].
The mean duration of the infectious (or shedding) period

is 8 months. This estimated duration is long compared
to other Salmonella strains causing clinical signs in dairy
cattle, such as Salmonella Typhimurium and Salmonella
Dublin [18]. The mild infectiousness and long infectious
period together explained the observed dynamic pattern
Figure 3 Distributions of the infectious period and the basic reprodu
transmission rate (β), the rate recovery (γ) and shape (n) parameters.
of Salmonella Kentucky in Figure 4; the prevalence of ani-
mals shedding Salmonella Kentucky gradually increased
during the epidemic phase and then a relatively stable
long-term endemic infection was established in the herd.
The posterior distribution of the shape parameter (n= 182,

95% credible interval [16, 482]) of the gamma distribution
for the infectious period did not include n = 1; therefore,
the conventional assumption that the infectious period is
described by an exponential distribution was found to be
inappropriate and a more realistic gamma distribution for
the infectious period was favored. This indicates that time
since infection is important in the transmission dynamics
of Salmonella Kentucky in adult dairy cattle. Consequently,
strategies for prevention and intervention could be affected
by the infection time of animals in the herd [28]. Although
large variability of the shape parameter is observed with an
ction ratio (R0) estimated from the posterior distributions of the



Figure 4 Comparison of the observed prevalence with the
predicted mean 2.5% quantile and 97.5% quantile prevalence
for Salmonella Kentucky over approximately 2 years.
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assumption of a 3-month period of immunity loss, it can be
significantly reduced if a 4-month period of immunity loss
is assumed (Additional file 1: Appendix B).
We expect that for many more persistent infections, the

assumption of an exponential rate of disappearance from
the infectious state will be incorrect. Implementation of
non-exponential distributions in ODE-based parameter
estimation is not straightforward. The ability to use
distributions other than exponential, with the gamma
distribution being an attractive alternative, may be one
of the key benefits of using ABC for parameter estimation,
as no explicit likelihood function needed to be defined.
This was especially helpful in this study, where we used
a gamma distribution for the infectious period. How-
ever, the lack of an explicit likelihood function requires
highly demanding computational efforts. Therefore, the
Figure 5 Estimates of the transmission rate (β), the recovery rate (γ),
against all 14 datasets (with the ith observed data point removed) us
implementation of an efficient algorithm in ABC as shown
here became imperative.
Posterior distributions of the transmission rate and the

rate of recovery (β, γ) obtained from ABC (Figure 2) were
relatively narrow. This was also described in a previous
study [24], partly due to the use of a deterministic model
(a system of differential equations) in the simulation of
ABC. If a stochastic SIRS model (in the formulation of
either stochastic differential equations or continuous-time
Markov Chain) was used in ABC, the credible intervals
would be wider due to the addition of stochasticity into
the SIRS model. The transmission rate (β) and the recovery
rate (γ) parameters had significantly better accuracy
than the shape parameter (n) as shown in the top row
of Figure 2, which indicated that these two parameters
were more sensitive to the model and data than the
shape parameter (n) [24].
We did not apply ABC to the stochastic SIRS model

because the estimated values of the transmission rate
(β), the rate of recovery (γ) and the shape parameter (n)
from the deterministic SIRS model were sufficient to
capture the observed prevalence pattern (Figure 4) using
a stochastic SIRS model implementing the direct Gillespie
algorithm. We also did not perform elaborate model
selection in this study because the SIRS model appears
to be capable of explaining the observed transmission
dynamics of Salmonella Kentucky. As mentioned before,
the observed intermittent shedding may be explained
by the relatively poor sensitivity of culture methods and
we therefore corrected for the occasional assumed false-
negative result. Further research to distinguish between
assuming true intermittent shedding [29] and a non-
perfect test sensitivity in continuous shedding may be
necessary.
the infectious period, and the basic reproduction ratio (R0)
ed for the cross-validation of the SIRS model.
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The posterior predictive check shown in Figure 4
indicated that the estimated transmission rate (β) and
the rate (γ) and shape (n) parameters in Figure 2 were
reasonable, as stochastic simulations for the SIRS model
with these parameter estimates from their posterior
distributions were able to capture the observed dynamic
(prevalence) pattern. The cross validation (Figure 5)
suggested that the estimate of the basic reproduction
ratio (R0) was fairly consistent. Although the shape
parameter had large variability (the top row of Figure 2c),
it did not have a substantial effect on the basic
reproduction ratio. In other words, neither the basic
reproduction ratio (R0) nor the dynamic pattern were
sensitive to changes in the shape parameter (n).
When varying the period of immunity from 3 months

to 4 months, no significant changes were found in the
transmission rate and the rate of the gamma distribution
for the infectious period. However, serological data that
are able to distinguish the recovered state (R) and the
susceptible (S) state would help remove the uncertainty
in the rate of immunity loss and increase the accuracy of
parameter estimation, especially for the estimation of the
shape parameter (n).
Conclusions
We developed a susceptible-infectious-recovered-susceptible
(SIRS) model to describe the transmission of Salmonella
Kentucky in an adult dairy herd. The important epidemio-
logical parameters of the SIRS model were estimated from
a longitudinal data set using the approximate Bayesian
computation method. This study shows that Salmonella
Kentucky has a mild invasion ability (R0 = 2.91, 95%
credible interval [2.83, 3.00]) and has a long average
infectious period (7.95 months, 95% credible interval
[7.70, 8.22]) in dairy cattle. These findings together
provide an explanation for the observed prevalence pattern
after invasion. The transmission rate and the recovery
rate parameters are inferred with better accuracy than
the shape parameter, therefore these two parameters
are more sensitive to the model and the observed data.
The estimated shape parameter (n) has large variability
with a minimal value greater than one, indicating that the
infectious period of Salmonella Kentucky in dairy cattle
does not follow the conventionally assumed exponential
distribution.
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