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Abstract

Background: One major problem in dairy cattle husbandry is the prevalence of udder infections. In today’s
breeding programmes, top priority is being given to making animal evaluation more cost-effective and reliable and
less time-consuming. We proposed tumor necrosis factor a (TNF-a), lactoferrin (LTF) and macrophage-expressed
lysozyme (mLYZ) genes as potential DNA markers in the improvement of immunity to mastitis.

This study included 588 Polish Holstein-Friesian cows kept on one farm located in the north-western region of
Poland. All clinical cases of mastitis in the herd under study were recorded by a qualified veterinarian employed by
the farm. The following indicators were applied to determine udder immunity to mastitis in the cows under study:
morbidity rate (MR), duration of mastitis (DM) and extent of mastitis (EM). TNF-a, mLYZ and LTF genotypes were
identified by real-time PCR method, using SimpleProbe technology. Due to the very low frequency of mLYZ allele T,
the gene was excluded from further analysis.

A statistical analysis of associations between TNF-a and LTF genes and immunity to mastitis were performed using
three models: 1) a parity-averaged model including only additive effects of the genes; 2) a parity-averaged model
including both additive and epistatic effects of the genes; and 3) a parity-specific model including only additive
effects of the genes.

Results: With the first and second models it was revealed that the genes effects on the applied indicators of
immunity to mastitis were non-significant whereas with the third one the effects were found to be statistically
significant. Particularly noteworthy was the finding that the effects of TNF-a and LTF varied depending on age
(parity). The alleles which were linked to high immunity to mastitis in lower parities appeared to be less favourable
in higher parities.

Conclusions: These interactions might be related to inflamm-ageing, that is an increased susceptibility to infection
due to immune system deregulation that progresses with age. Such pattern of interactions makes it impossible to
use the genes in question in marker-assisted selection aimed at reducing heritable susceptibility to mastitis. This is
because the immune mechanisms behind resistance to infections proved to be too complex.
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Background

One major problem that dairy cattle farmers face is the
prevalence of udder infections. Despite considerable
technological advancements in animal husbandry, udder
inflammation is still widespread, particularly in high-
yielding herds. Identification of marker sequences related
to immunity to mastitis may be instrumental in improving
this trait and therefore reducing the costs associated with
the prevention and treatment of the disease. In the case
of low heritability traits (such as immunity to mastitis)
which have high negative genetic correlation with other
traits being subject to selection, marker-assisted selec-
tion (MAS) programmes are more effective than trad-
itional methods [1].

Due to their biological functions, TNF-«, LTF and mLYZ
genes have been proposed as potential DNA markers for
immunity to mastitis. The genes are located in the
chromosome regions which have been shown by some au-
thors to contain loci linked to susceptibility to udder in-
flammation [2-4].

TNF-a is one of the main pro-inflammatory cytokines
involved in the immune response. Along with other fac-
tors, TNF-a stimulates the proliferation, differentiation
and activity of many immune system cells: B lympho-
cytes, T lymphocytes, NK (natural killer) lymphocytes
and LAK (lymphokine-activated killer) cells [5]. It exerts
chemotactic and activating effects on monocytes, macro-
phages and eosinophils, thereby increasing their cytotox-
icity. TNF-a also enhances the phagocytic properties of
neutrophils, accelerates their release from the bone mar-
row, and stimulates them to produce reactive oxygen
species, which increases their antibacterial and cytotoxic
properties. Moreover, TNF-a induces the release of
many other cytokines [6]. The gene encoding TNF-a
contains four exons and three introns and is located on
chromosome BTA23q22 [7]. It is expressed in many
types of mammalian cells, but most strongly in macro-
phages and monocytes. TNF-a production in these
phagocytic cells is stimulated by lipopolysaccharide
(LPS) found in the bacterial cell wall. In LPS-stimulated
macrophages, the expression of TNF-« gene triples, the
level of mRNA increases approximately 100-fold, while
the secretion of the protein itself may be as much as
10,000 times higher [8].

LTF is a multifunctional protein with antimicrobial
properties. It is active against many Gram-negative and
Gram-positive bacteria, enveloped and non-enveloped
viruses, and various types of fungi and parasites [9]. LTF
has an ability to bind Fe*" ions [10,11] and other growth
agents such as phosphorus and zinc [12]. Thus, availabil-
ity of chemical elements to potential pathogens becomes
limited. LTF is found in plasma, tears, semen, and vari-
ous mucoserous secretions. However, it is most abun-
dant in neutrophil granules and with them it can be
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transported to the infection site. Moreover, LTF stimu-
lates neutrophils, the reticuloendothelial (monocyte-
macrophage) system and myelopoesis [13]. Thus, it
constitutes a vital element of innate immunity, which
functions as the organism’s ‘first line of defence’ during an
infection [14]. The bovine LTF gene has been mapped to
chromosome BTA22q24. The coding sequences are di-
vided into 17 exons of 34.5 bp. However, the LTF gene ex-
pression pattern is markedly different in various mammal
species as well as in various tissues and cell types. The ex-
pression is regulated via different signal pathways, e.g. by
steroid hormones, the growth hormone or the kinase cas-
cade [15].

LYZ is present in most body fluids, the highest con-
centration being found in tears and chicken egg white. It
occurs in the primary and secondary granules of poly-
morphonuclear granulocytes, and is also produced in
monocytes, macrophages and epithelial cells [16]. LYZ is
one of the elements of the humoral adaptive immune re-
sponse. The bactericidal properties of LYZ are primarily
due to its destructive effect on the bacterial cell wall: it
damages the outer membrane, disintegrates the cyto-
plasm and increases the permeability of the inner mem-
brane, which eventually leads to bacterial lysis [16,17].
This mechanism is strongest against Gram-positive bac-
teria whereas Gram-negative strains are less susceptible
to LYZ as their cell walls have a more complex structure
[18]. The antimicrobial activity of LYZ may also be re-
lated to its cationic and hydrophobic properties [18].
LYZ present in different tissues is coded by different
genes. The bovine mLYZ gene analyzed in this study is
an immune-dependent gene. The gene’s structure as well
as its organization predispose it to being expressed both
in leukocytes (monocytes/macrophages and neutrophils)
and in the mammary gland tissue. It consists of four
exons and three introns and is located on chromosome
BTA5q26 [19]. In intron 2 of this mLYZ gene at position
8603, a single nucleotide polymorphism (SNP) (C/T
transition) related to cows’ immunity was detected by
Pareek et al. [20].

Results

The laboratory analysis showed three genotypes of TNF-«
and two genotypes of LTF and mLYZ. Their frequencies
are given in Table 1.

Due to the very low frequency of mLYZ allele T, the
gene was excluded from further analysis. The effects of
the TNF-a and LTF genes on all the three udder health
indicators were found to be non-significant when ana-
lyzed for all inter-calving periods taken together. How-
ever, quite a different picture arose when the effects
were estimated for each period separately.

When analyzing the number of mastitis cases with a
lactation-averaged model (model 1 and 2), the gene effects
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Table 1 Frequency of TNF-a , LTF and mLYZ genotypes
and alleles

Gene Genotype Number of Genotype  Allele Allele
cows frequency frequency

TNF- cC 196 03328 C 0.5604

a T 267 04539 T 04396
T 125 02133 - -

LTF AA 334 0.5680 A 0.7840
AB 254 04320 B 0.2160

mLYZ cc 558 0.9490 C 0.9745
cr 30 0.0510 T 0,0255

Total - 588 1.0000 1.0000

were found to be statistically non-significant, whereas
when analyzing the interactions between the TNF-a gene
and parity (model 3), significant effects were observed. In
particular, allele 7" of TNF-a was associated with a lower
number of mastitis cases in lower parities and a higher
number of mastitis cases in higher parities. The associa-
tions were confirmed statistically for the second
intercalving period (Table 2).

As for the number of infected udder quarters, no sig-
nificant associations were found with the parity-averaged
models (1 and 2). However, in the case parity-specific es-
timates (model 3), association was detected between al-
lele T of the TNF-« gene and a lower number of infected
udder quarters, but only in the earlier intercalving pe-
riods. A statistically significant effect was observed in
the second intercalving period. Similarly, allele B of the
LTF gene was associated with a lower number of affected
udder quarters in the first intercalving period whereas in
the subsequent periods the same allele had an unfavour-
able effect (Table 3).

The gene x parity interaction was even stronger when
related to the number of days with mastitis. The effects

Table 2 The effect of TNF-a and LTF genes on MR

Gene Inter-calving period Estimate Standard error

TNF-a 1 -0.12230 0.1876
2 —0.45640*% 0.1829
3 —-0.12130 0.2041
4 0.17480 02326
5 0.12440 0.2640
6 0.28070 03945

LTF 1 0.03483 03153
2 0.12500 0.3105
3 025320 03364
4 0.20840 0.3878
5 0.50650 04255
6 0.88310 0.6460

Asterisks indicate statistical significance levels * P < 0.05.
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Table 3 The effect of TNF-a and LTF genes on EM

Gene Inter-calving period Estimate Standard error

TNF-a 1 -0.60570 03327
2 —0.83240* 03243
3 —0.57790 03619
4 -0.00314 04126
5 042340 04683
6 0.09321 0.6996

LTF 1 —0.73600 0.5592
2 0.10390 0.5507
3 022010 0.5966
4 040560 0.6877
5 1.18000 0.7546
6 1.0910 1.1456

Asterisks indicate statistical significance levels * P < 0.05.

of the genes under study proved to be statistically non-
significant when averaged over parities (models 1 and 2).
On the other hand, an association was found when using
a model which included interactions between the genes
and parity (model 3). Allele T of the TNF-a gene was
significantly associated with a higher DM, but only in
the fifth and sixth intercalving period. Furthermore, al-
lele B of the LTF gene in the first parity was associated
with a lower number while in the fifth one — with a
higher number of days with mastitis (Table 4).

Discussion

The analysis of the effects of the TNF-a and LTF genes
in relation to clinical mastitis showed strong associations
between gene x parity interaction and MR, EM and DM
of the disease. Our hypothesis is that these interactions
might be related to a phenomenon known as inflamm-
ageing.

In humans, ageing is associated with significant
changes in the innate immune system such as impair-
ment of the phagocytic activity of neutrophils and mac-
rophages, increased production of pro-inflammatory
cytokines and decreased antibacterial defence [21]. The
name given to the global age-related dysfunctions of the
immune system is immunosenescence [21-23]. The de-
terioration of the immune system leads to an increased
risk of infections such as bacterial infections (pneumonia
and urinary tract, skin, and soft-tissue infections) and
some viral infections (reactivation of herpes zoster and
significantly increased morbidity and mortality due to
the influenza virus) [24].

One of the aspects of immunosenescence is “inflamm-
aging”, a term coined by Franceschi to refer to a low-grade,
chronic and systemic inflammatory status which probably
results from a continuous long-term exposure to antigens
[25,26]. Many studies on older individuals showed higher
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Table 4 The effect of TNF-a and LTF genes on DM

Gene Inter-calving period Estimate Standard error

TNF-a 1 -0.05145 0.1109
2 —-0.14070 0.1081
3 -0.03931 0.1206
4 —-0.06595 0.1375
5 0.35460*% 0.1561
6 0.67430%* 02332

LTF 1 —0.56560** 0.1864
2 —0.04408 0.1836
3 -0.08243 0.1989
4 0.26440 0.2293
5 0.58100% 02515
6 0.53880 03819

Asterisks indicate statistical significance levels * P < 0.05, ** P < 0.01.

LPS-induced production of pro-inflammatory cytokines,
particularly IL-1, IL-6, and TNF-a, which are mainly pro-
duced by macrophages and fibroblasts [24,27].

The aging process results from a combination of cellular,
genetic and environmental factors [28]. In modern theories
of aging, a key causative role in this process is attributed to
factors that have a direct effect on cells (such as free radi-
cals, metabolic rate, replicative senescence — so-called
Hayflick limit, accumulation of harmful metabolites), and
to genetic factors (DNA repair defects, accumulation of
somatic mutations, or telomere length).

Ageing is not only a major risk factor for infection, but
also vice-versa: infection may contribute to the aging
process. Franceschi et al. [25] suggested three possible
models to explain this relationship. First, in the simplest
model, direct tissue destruction by a pathogen may play
a role in the ageing process. Second, there is possibly a
“trade-off” between the capacity of the host defence sys-
tem to kill pathogens and the damage it causes to the
surrounding host tissue. Thus, the beneficial effects of
inflammation consisting in the neutralization of patho-
genic microbes early in life and in adulthood become
detrimental late in life due to an accumulation of damage
to the host tissues. In fact, a chronic low-grade inflamma-
tion can be seen even in healthy elderly individuals [24].
Third, it is possible that latent or chronic infection con-
tributes to the ageing process. Latent infection might peri-
odically be reactivated, leading to immune-mediated
killing of the productively infected cells. Although micro-
organisms that are able to cause chronic infection usually
find ways to avoid immune response, they might contrib-
ute to aging through their manipulation of the cell and tis-
sue function [29].

Recent findings suggested that genes involved in the im-
mune response may be particularly prone to age-related
changes in DNA methylation [30]. For example, Gowers
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et al. [31] reported age-related loss of methylation of TNF
CpG motifs in both peripheral blood leucocytes and mac-
rophages. Lower DNA methylation in the TNF promoter
may contribute to both an increase in the production of
this cytokine and a higher incidence of inflammatory dis-
eases in older individuals. This data suggested that age-
related loss of the epigenetic signature of this cytokine
may contribute to inflamm-aging.

In the light of the above findings, our concept that sig-
nificant interactions between the effect of the TNF-a
gene and parity has to do with inflamm-ageing seems
highly probable. In earlier lactations, allele A of the gene
encoding TNF-a, whose role is to activate the immune
system during infection, proved to be very beneficial — it
is linked to higher immunity against infection compared
with the other allele in this locus. However, with each
successive lactation the effect of the gene becomes in-
creasingly less favourable. The application of the theory
of inflamm-aging to interpret the results of this study
seems even more justified when we consider the fact
that the highest number of statistically significant effects
of the TNF-a gene was observed for the duration of
mastitis. This indicator is most closely related to the
chronic status of the disease, which is characteristic of
inflamm-aging. Although cows in the sixth or seventh
lactation can hardly be considered old, in the case of
high-yielding animals the immune dysregulation process
is accelerated considerably due to long-term exposure to
stressors such as previous infections, mechanical injur-
ies, chemical irritation (e.g. caused by disinfectants), and
strain related to high productivity. The importance of
extrinsic factors in the progression of inflaimm-ageing
has been emphasized, among others, by Larbi et al. [32].

The hypothesis that the interaction between the effect
of a gene and parity may be associated with inflamm-
aging is also justified in the case of the LTF gene. This is
because LTF, in addition to its bacteriostatic and bacteri-
cidal activity, is characterized by anti-inflammatory and
anti-allergic properties.

Besides being a natural antibiotic, LTF has immuno-
regulatory, antineoplastic, and anti-inflammatory func-
tions and plays a role in regulating haematopoiesis [33].
Moreover, LTF is able to bind LPS and soluble CD14,
thereby preventing initiation of a CDI14-activated
proinflammatory expression pattern [34,35]. The pro-
tective properties of LTF are due to the fact that it regu-
lates the production and release of cytokines and other
factors involved in the inflammatory response: it inhibits
pro-inflammatory factors (such as TNF-q, IL-1, IL-8 and
histamine) and stimulates anti-inflammatory factors (such
as IL-10, IL-4 and IL-6) [34]. Acting as an antioxidant,
LTF also protects against oxidative stress. Moreover,
LTF has the ability to bind directly to bacterial CpG motifs
and thus inhibits their immunostimulating effect [36].
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Furthermore, LTF may play an immunoregulatory role
and alter the expression pattern in cells via an intracellular
signal generated in LTF receptors located on the surface
of many cell types (mostly white blood cells — myeloblasts,
monocytes, macrophages and lymphocytes, but also epi-
thelial cells) [34].

Perhaps, in the case of the analyzed LTF gene variants
the above properties of the gene’s product decline with
age, which leads to an imbalance between pro- and anti-
inflammatory factors. This hypothesis is supported by
the results of studies carried out on people). Carrieri et
al. [37] have shown that centenarians are equipped with
gene variants that allow them to optimize the balance be-
tween pro- and anti-inflammatory factors and other medi-
ators involved in inflammation. Similarly, Lang et al. [38]
suggest that research into the capacity of centenarians to
exert a protective effect against the adverse outcomes of
ageing will help to develop a better understanding of
the dysregulation of the balance between pro- and anti-
inflammatory pathways.

Our hypothesis is also supported by evolutionary theor-
ies of ageing based on antagonistic pleiotropy of the im-
munity genes [39]. The immune system, by neutralizing
pathogens, plays a beneficial role until the time of
reproduction and parental care. Subsequently, by causing
chronic inflammation, it can have a negative effect late in
life, in a period not expected by evolution [39-41]. Age-
related diseases are “the price” for an active immune sys-
tem that defends the body in youth but harms it later in
life [42]. Crimmins and Finch [43] even suggest that the
genetic polymorphisms responsible for a low inflamma-
tory response in humans might result in a greater chance
of longevity.

Conclusions

Although our study showed significant associations be-
tween TNF-a and LTF and immunity to mastitis, the re-
sults would be difficult to apply in marker-assisted
selection programmes due to interactions with parity.
On the other hand, our findings provide insight into the
complex mechanisms of immunity to infections. It is
supposed that the interactions between gene effects and
parity are related to the phenomenon of inflamm-ageing.

Methods

Material

The study was conducted in a herd of approximately 1
000 Polish Holstein-Friesian cows kept on a farm located
in the north-western region of Poland. Within this herd,
588 cows were diagnosed at least once with clinical mas-
titis and only these cows were included in the analyses.
An overview of the research material is given in Table 5.
All animals lived under similar environmental condi-
tions. They were kept in one free-stall barn and milked
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twice a day in a herringbone-type milking parlour. The
cows had ad libitum access to water from individual
automatic drinking vessels and were fed an identical
standard TMR (total mixed ration) diet. Additionally,
during milking each cow was given specially selected
feed concentrate suited to its current physiological con-
dition and milk yield. The cows were of different ages
and different parities (from first to sixth).

All clinical cases of mastitis in the herd under study
were recorded by a qualified veterinarian employed by
the farm. The records specified the number of affected
udder quarters and the duration of the disease.

Our study was based on data collected in 2003-2008
for a total of 3,544 lactations, or more specifically inter-
calving periods, as the cows were examined both during
lactation and in the dry-off period. The average parity
per cow amounted to 3.46.

The data was used to analyze not only the number of
clinical cases but also the extent and duration of inflam-
mation. The following indicators were applied to deter-
mine udder condition/health / immunity to mastitis in
the cows under study:

— Morbidity rate (MR) — total number of clinical
mastitis cases (C) in a particular cow averaged per 100
days of intercalving period (IC) MR = ]% x 100

— Duration of mastitis (DM) — total number of days
with mastitis (D) in a particular cow averaged per 100
days of intercalving period (IC) (DM = £ x 100)

— Extent of mastitis (EM) — total number of affected
udder quarters (Q) in a particular cow averaged per
100 days of intercalving period (IC) EM = (% X 100)

The above indicators were calculated separately for
each subsequent intercalving period and for all the
intercalving periods in total.

Laboratory method

DNA isolation was performed with ZymoResearch Gen-
omic DNA Kit™ (ZymoResearch, USA) using Zymo-Spin™
IC Fast-Spin column technology. Then, SimpleProbe real-
time PCR assays were developed to identify TNF-o, mLYZ
and LTF genotypes. The TNF-a and mLYZ genes
(GeneBank 714137 and U25810, respectively) are known
to contain nucleotide transitions C/T, which are respon-
sible for the occurrence of polymorphic forms. On this
basis appropriate primers and probes were designed. How-
ever, in the case of the LTF gene, it is only known that the
sixth intron contains a polymorphic site recognized by
restrictase EcoRI [44]. Therefore, different variants of this
gene with regard to the presence of the EcoRI poly-
morphic site were sequenced and a new SNP was found —
a T/C mutation, which was registered in the NCBI dbSNP
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Table 5 An overview of the research material
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Inter-calving period/lactation* No. of cows in herd

% of cows with mastitis**

Mean daily milk yield Mean InSCC for herd

I 813

Il 918
n 868
v 613
\' 395
Vi 243
Total 990

29.89 30.52 4.89
2767 34.25 5.14
2581 3538 547
29.36 34.89 5.75
35.70 33.60 6.00
3498 3239 6.24
5141 31.82 5.58

*The percentage of cows with mastitis was calculated for the whole inter-calving period while the mean daily milk yield and SCC - for the lactation period.

**Cows affected by mastitis at least once in a given inter-calving period.

database (rs109623119). Primers and probes used to iden-
tify TNF-a, LTF and mLYZ genotypes are given in Table 6.

PCR reactions were carried out in a LightCycler 2.0
(Roche Molecular Systems Inc., Pleasanton, USA). Each
batch consisted of 31 samples and a negative control
(water) in 20 pl capillary tubes. The products were ana-
lyzed by means of real-time fluorescence readout. After-
wards, a melting curve analysis was performed to detect
mutations and examine the product characteristics. Amp-
lification was made with Qiagen® Multiplex PCR Kit
(Qiagen GmbH, Hilden, Germany). The PCR mix (10 ul)
used to identify LTF and mLYZ was made up of: 5 pl 2x
Qiagen PCR Master Mix (final concentration of 3 mM
MgCly); 1 pl each primer (0.2 uM); 1 pl SimpleProbe (0.2
uM); 1 ul water. The temperature profile was as follows:
initial denaturation — 95°C for 15min; amplification — 45
cycles: denaturation at 95°C for 20s, annealing at 57°C for
30s, and elongation at 72°C for 40s; melting — 95°C, 40°C
and 80°C with ramp rate 0.1°C/min; cooling — 30s.

In the case TNF-a, asymmetric real-time PCR was used
where the quantity of primer on the same strand as the
probe is increased whereas the quantity of the probe is re-
duced. The composition of the reaction mix was as

Table 6 Primers and probes used to identify TNF-a, LTF
and mLYZ genotypes

TNF-a
Forward primer CCCTTCTCCAGCTGGAAGA
Rewerse primer ATCTCAGCACTGAGGCGATC
SimpleProbe CCTGGTACGAACCCAXITCTACCA - PH
LTF

TCATGTTAAGTCACCTGAAATGGTA
AGTATGCTGAATATGATACTGGCA

Forward primer

Rewerse primer

SimpleProbe CCCAAGTCCATCTATGCATTCCCAG
mLYZ

Forward primer GCTGAGGAAAGAACAACTAAAATAAT

Rewerse primer CTTGAGTGATGTCATCTTGCAG

SimpleProbe CCATCAACAGAXITAAACAGCCCTTAA - PH

follows: 5 pul 2x Qiagen PCR Master Mix (final concentra-
tion of 3 mM MgCl,); 0.5 ul forward primer (0.1 uM); 1.5
ul reverse primer (0.3 uM); 0.5 pl SimpleProbe (0.1 uM);
1.5 pl water. It was necessary to use Q-solution — a strong
coagulant which enhances matrix DNA denaturation
thereby preventing primers from forming secondary struc-
tures. The following temperature profile was applied: ini-
tial denaturation — 95°C for 15min; amplification — 45
cycles: denaturation at 95°C for 30s, annealing at 57°C for
30s, and elongation at 72°C for 60s; melting — 95°C, 40°C
and 80°C with ramp rate 0.1°C/min; cooling — 30s.

Statistical analysis

A zero hypothesis of no effects of the selected gene SNPs
on the udder health indicators (Hy: gsnp = 0) was examined
against an alternative Hj:gsyp#0 using a one-sample t
test.

As the values of udder health indicators (MR, EM, or
DM) did not have normal distribution, they were
transformed into a logarithmic scale.

The following three mixed linear models were applied:

1. A parity-averaged model including only additive
effects of the genes:

y=Xq+Za+e
where:

y — vector of trait values defined as InT', where T
represents a recorded trait (MR, DM, EM), assuming
y ~N(Xq, ZGZ" + R)

q — vector of fixed effects (a general mean, a cow’s
birth year, additive effects of TNF-« and LTF);

a ~ N(0, G) vector of random polygenic effects of
cows, assuming G = Ac? with A representing
additive polygenic relationships among individuals,
estimated from a pedigree and o2 being a component
of the total additive genetic variance;

e ~ N(0, R) vector of random errors with R = Io?2
where 02 denotes the error variance;

X and Z - corresponding design matrices.
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2. A parity-averaged model including both additive and
epistatic effects of the genes — the same as model 1
plus epistatic (additive by additive) effects.

3. A parity-specific model including gene x parity
interaction and the random permanent
environmental effect.

Note that the parameterization for the SNPs representing
the genes was 0, 1 and 2 for the homozygous, heterozygous
and the other homozygous genotype, respectively. All calcu-
lations were made using SAS 9.2 software.
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